Publications

2025

Patton, C. E., Clegg, B. A., Davis, B. C., Caglar, T., Siebert, C., & Blanchard, N. (2025). The Choice to Use Automation: Improvements from Evidence Accumulation. International Journal of Human–Computer Interaction, 1–18. [DOI]

2024

Nath, A., Venkatesha, V., Bradford, M., Chelle, A., Youngren, A. C., Mabrey, C., Blanchard, N., & Krishnaswamy, N. (2024). "Any Other Thoughts, Hedgehog?" Linking Deliberation Chains in Collaborative Dialogues. arXiv preprint arXiv:2410.19301. [DOI]

Seefried, E., Bahny, J., Jung, C., Venkatesha, V., Bradford, M., Blanchard, N., & Krishnaswamy, N. (2024). Perceiving and Learning Color as Sound in Virtual Reality. In 2024 IEEE International Symposium on Mixed and Augmented Reality Adjunct. [DOI]

Chartier, T., Castillon, I., Venkatesha, V., Cleary, M., & Blanchard, N. T. (2024). Using Eye Gaze to Differentiate Internal Feelings of Familiarity in Virtual Reality Environments: Challenges and Opportunities. In 27th Annual CyberPsychology, CyberTherapy & Social Networking Conference. [DOI]

Bradford, M., Seefried, E., Krishnaswamy, N., & Blanchard, N. (2024). Thematic Analysis of Foreign Language Learning in a Virtual Environment. In 27th Annual CyberPsychology, CyberTherapy & Social Networking Conference. [DOI]

Castillon, I., Chartier, T., Venkatesha, V., Okada, N. S., Davis, A., Cleary, A. M., & Blanchard, N. (2024). Automatically Identifying the Human Sense of Familiarity Using Eye Gaze Features. In International Conference on Human-Computer Interaction (pp. 291–310). Springer. [DOI]

VanderHoeven, H., Bradford, M., Jung, C., Khebour, I., Lai, K., Pustejovsky, J., & Blanchard, N. (2024). Multimodal Design for Interactive Collaborative Problem-Solving Support. In International Conference on Human-Computer Interaction (pp. 60–80). Springer. [DOI]

VanderHoeven, H., & Blanchard, N., & Krishnaswamy, N. (2024). Point Target Detection for Multimodal Communication. In International Conference on Human-Computer Interaction (pp. 356–373). Springer. [DOI]

Seefried, E., Bradford, M., Aich, S., Siebert, C., Krishnaswamy, N., & Blanchard, N. (2024). Learning Foreign Language Vocabulary Through Task-Based Virtual Reality Immersion. In International Conference on Human-Computer Interaction (pp. 203–213). Springer. [DOI]

Nath, A., Jamil, H., Ahmed, S. R., Baker, G., Ghosh, R., Martin, J. H., Blanchard, N., & Krishnaswamy, N. (2024). Multimodal Cross-Document Event Coreference Resolution Using Linear Semantic Transfer and Mixed-Modality Ensembles. In Proceedings of the 2024 Joint International Conference on Computational Linguistics. [DOI]

Khebour, I., Lai, K., Bradford, M., Zhu, Y., Brutti, R., Tam, C., Tu, J., Ibarra, B., & Blanchard, N. (2024). Common Ground Tracking in Multimodal Dialogue. arXiv preprint arXiv:2403.17284. [DOI]

Venkatesha, V., Nath, A., Khebour, I., Chelle, A., Bradford, M., Tu, J., & Blanchard, N. (2024). Propositional Extraction from Natural Speech in Small Group Collaborative Tasks. In Proceedings of the 17th International Conference on Educational Data Mining. [DOI]

Seefried, E., Jung, C., Fitzgerald, J., Bradford, M., Chartier, T., & Blanchard, N. (2024). Balancing Quality and Quantity: The Impact of Synthetic Data on Smoke Detection Accuracy in Computer Vision. In Synthetic Data for Computer Vision Workshop@ CVPR 2024. [DOI]

Khebour, I., Brutti, R., Dey, I., Dickler, R., Sikes, K., Lai, K., Bradford, M., Cates, B., & Blanchard, N. (2024). When Text and Speech Are Not Enough: A Multimodal Dataset of Collaboration in a Situated Task. Journal of Open Humanities Data, 10. [DOI]

2023

Jamil, H., Liu, Y., Blanchard, N., Kirby, M., & Peterson, C. (2023). Leveraging Linear Mapping for Model-Agnostic Adversarial Defense. Frontiers in Computer Science, 5, 1274832.[DOI]

Fitzgerald, J., Seefried, E., Yost, J. E., Pallickara, S., & Blanchard, N. (2023). Paying Attention to Wildfire: Using U-Net with Attention Blocks on Multimodal Data for Next Day Prediction. In Proceedings of the 25th International Conference on Multimodal Interaction.[DOI]

Castillon, I., Venkatesha, V., Caglar, T., Liu, X., Cleary, A., and Blanchard, N. (2023). Predicting the Occurrence of Déjà Vu using Eye Features. In Association for Computing Machinery Graduate Student Research Competition, awarded 3rd place. CMD-IT/ACM Richard Tapia Celebration of Diversity in Computing Conference.

VanderHoeven, H., Blanchard, N., and Krishnaswamy, N. (2023). Robust Motion Recognition using Gesture Phase Annotation. In International Conference on Human-Computer Interaction (HCII). Springer.[DOI]

Kandoi, C., Jung, C., Mannan, S., VanderHoeven, H., Meisman, Q., Krishnaswamy, N., and Blanchard, N. (2023). Intentional Microgesture Recognition for Extended Human-Computer Interaction. In International Conference on Human-Computer Interaction (HCII). Springer. [DOI]

Kuvar, V., Blanchard, N., Colby, A., Allen, L., & Mills, C. (2023). Automatically detecting task-unrelated thoughts during conversations using keystroke analysis. User Modeling and User-Adapted Interaction, 33(3), 617-641. [DOI]

Bradford, M., Khebour, I., Blanchard, N., & Krishnaswamy, N. (2023). Automatic detection of collaborative states in small groups using multimodal features. In International Conference on Artificial Intelligence in Education, 767-773. [DOI]

Terpstra, C., Khebour, I., Bradford, M., Wisniewski, B., Krishnaswamy, N., & Blanchard, N. (2023). How good is automatic segmentation as a multimodal discourse annotation aid? In Workshop on Interoperable Semantic Annotation (ISA-19). [DOI]

Pickard, W., Sikes, K., Jamil, H., Chaffee, N., Blanchard, N., Kirby, M., & Peterson, C. (2023). Exploring fMRI RDMs: Enhancing Model Robustness Through Neurobiological Data. Frontiers in Computer Science, 5, 1275026. [DOI]

Jamil, H., Liu, Y., Caglar, T., Cole, C., Blanchard, N., Peterson, C., & Kirby, M. (2023). Hamming similarity and graph Laplacians for class partitioning and adversarial image detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). [DOI]

Roy, S., Roygaga, C., Blanchard, N., & Bharati, A. (2023). A computer vision method for estimating velocity from jumps. In Computer Vision 4 Winter Sports (CV4WS) at Winter Conference for AI. [DOI]

2022

Jamil, H., Liu, Y., Cole, C., Blanchard, N., King, E. J., Kirby, M., & Peterson, C. (2022). Dual Graphs of Polyhedral Decompositions for the Detection of Adversarial Attacks. In The 6th Workshop on Graph Techniques for Adversarial Activity Analytics. [DOI]

Krishnaswamy, N., Pickard, W., Cates, B., Blanchard, N., & Pustejovsky, J. (2022). The voxworld platform for multimodal embodied agents. LREC Proceedings, 13. [DOI]

McNeely-White, D., Sattelberg, B., Blanchard, N., & Beveridge, R. (2022). Canonical face embeddings. IEEE Transactions on Biometrics, Behavior, and Identity Science, 4(2), 197-209. [DOI]

Bradford, M., Hansen, P., Lai, K., Brutti, R., Dickler, R., Hirshfield, L. M., Pustejovsky, J., Blanchard, N., and Krishnaswamy, N. (2022). Challenges and Opportunities in Annotating a Multimodal Collaborative Problem Solving Task. In Workshop on Interdisciplinary Approaches to Getting AI Experts and Education Stakeholders Talking (Bridging AIEd). International AIEd Society. [DOI]

Castillon, I., Venkatesha, V., VanderHoeven, H., Bradford, M., Krishnaswamy, N., and Blanchard, N. (2022). Multimodal Features for Group Dynamic-Aware Agents. In Workshop on Interdisciplinary Approaches to Getting AI Experts and Education Stakeholders Talking (Bridging AIEd). International AIEd Society. [DOI]

Bradford, M., Hansen, P., Beveridge, R., Krishnaswamy, N., and Blanchard, N. (2022). A deep dive into microphones for recording collaborative group work. In International Conference on Educational Data Mining (EDM). International Educational Data Mining Society. [DOI]

Roygaga, C., *Patil, D., *Boyle, M., Reiser, R., Bharati, A., Blanchard, N. (2022) APE-V: Athlete Performance Evaluation using Video. In Proceedings 2022 IEEE Winter Conference on Applications of Computer Vision (WACV) Workshops. IEEE. [DOI]

Gorbett, M., Blanchard, N. (2022). Utilizing network properties to detect erroneous inputs. In Proceedings 2022 IEEE Winter Conference on Applications of Computer Vision (WACV) Workshops. IEEE. [DOI]

Danilyuk, E. (2022) PortfoliU Project: Investigating an Open-Source Repository of Personal Portfolio Websites and How they Benefit Computer Science Students. 2022 Rocky Mountain Conference for Women in Computing. Poster + Invited Talk.

2021

Trabelsi, A., Beveridge, R. J., & Blanchard, N. (2021). Motion prediction performance analysis for autonomous driving systems and the effects of tracking noise. arXiv preprint arXiv:2104.08368. [DOI]

Sakimoto, S. E. H., Lewis, D. D., Dileep, S., Memon, P., Beveridge, J. R., & Blanchard, N. (2021). Deep Learning for an Inventory of Small to Midsize Volcanic Edifices on Mars. 52nd Lunar and Planetary Science Conference, 1626. [DOI]

Trabelsi, A., Beveridge, J. R., & Blanchard, N. (2021). Drowned out by the noise: Evidence for tracking-free motion prediction. CoRR. [DOI]

Trabelsi, A., Chaabane, M., Blanchard, N., & Beveridge, R. (2021). A pose proposal and refinement network for better 6D object pose estimation. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. [DOI]

2020

Dileep, S., Zimmerle, D., Beveridge, R., and Vaughn, T. (2020). Automated Identification of Oil Field Features using CNNs. In NeurIPS 2020 Workshop on Tackling Climate Change with Machine Learning. Neural Information Processing Systems. [DOI]

Chaabane, M., Trabelsi, A., Blanchard, N., & Beveridge, R. (2020). Looking Ahead: Anticipating Pedestrians Crossing with Future Frames Prediction. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE. [DOI]

McNeely-White, D., Sattelberg, B., Blanchard, N., & Beveridge, R. (2020). Exploring the interchangeability of CNN embedding spaces. arXiv preprint arXiv:2010.02323. [DOI]