CS253: Software Development with C++

Fall 2021

Random Numbers

Show Lecture.RandomNumbers as a slide show.

CS253 Random Numbers

Philosophy

“Computers can’t do anything truly random. Only a person can do that.”

Old Stuff

Traditional Method

Traditional random number generators work like this:

unsigned long n = 1;
for (int i=0; i<5; i++) {
    n = n * 16807 % 2147483647;
    cout << n << '\n';
}
16807
282475249
1622650073
984943658
1144108930

Overview

Generators

EngineDescription
default_random_engineDefault random engine
minstd_randMinimal Standard minstd_rand generator
minstd_rand0Minimal Standard minstd_rand0 generator
mt19937Mersenne Twister 19937 generator
mt19937_64Mersenne Twister 19937 generator (64 bit)
ranlux24_baseRanlux 24 base generator
ranlux48_baseRanlux 48 base generator
ranlux24Ranlux 24 generator
ranlux48Ranlux 48 generator
knuth_bKnuth-B generator
random_deviceTrue random number generator

Default Engine

Define a random-number generator, and use () to generate a number. This is not a function call, because gen is an object, not a function. It’s operator().







🤨 That sequence looks familiar …

#include <random>
#include <iostream>
using namespace std;

int main() {
    default_random_engine gen;
    for (int i=0; i<5; i++)
        cout << gen() << '\n';
}
16807
282475249
1622650073
984943658
1144108930

I won’t bother with the #includes in subsequent examples.

Mersenne Twister

mt19937_64 gen;
cout << "range is " << gen.min() << "…" << gen.max() << "\n\n";
for (int i=0; i<3; i++)
    cout << gen() << '\n';
range is 0…18446744073709551615

14514284786278117030
4620546740167642908
13109570281517897720

Ranges

Generators have varying ranges:

ranlux24 rl;
minstd_rand mr;
random_device rd;
mt19937_64 mt;

cout << "ranlux24:      " << rl.min() << "…" << rl.max() << '\n'
     << "minstd_rand:   " << mr.min() << "…" << mr.max() << '\n'
     << "random_device: " << rd.min() << "…" << rd.max() << '\n'
     << "mt19937_64:    " << mt.min() << "…" << mt.max() << '\n';
ranlux24:      0…16777215
minstd_rand:   1…2147483646
random_device: 0…4294967295
mt19937_64:    0…18446744073709551615

Hey, look! Zero is not a possible return value for minstd_rand.

Save/Restore

A generator can save & restore state to an I/O stream:

ranlux24 gen;
cout << gen() << ' ';
cout << gen() << endl;
ofstream("state") << gen;
system("wc -c state");
cout << gen() << ' ';
cout << gen() << '\n';
ifstream("state") >> gen;
cout << gen() << ' ';
cout << gen() << '\n';
15039276 16323925
209 state
14283486 7150092
14283486 7150092
endl! Isn’t that a sin? 😈 🔥

Needed to flush output before wc ran.

True randomness

random_device a, b, c;
cout << a() << '\n'
     << b() << '\n'
     << c() << '\n';
247284018
2147899968
652024570

Cloudflare

The hosting service Cloudflare uses a unique source of randomness.

a picture of Cloudfare’s wall of lava lamps

Seeding

minstd_rand a, b, c(123);
cout << a() << ' ' << a() << '\n';
cout << b() << ' ' << b() << '\n';
cout << c() << ' ' << c() << '\n';
48271 182605794
48271 182605794
5937333 985676192

Seed with process ID

auto seed = getpid();
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
1450169634
1761445202
1401310071
1198524035
744243305

Seed with time

// seconds since start of 1970
auto seed = time(nullptr);
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
2131097218
1432151484
1738203587
491776140
241820002

Seed with more accurate time

Nanoseconds make more possibilities:

auto seed = chrono::high_resolution_clock::now()
            .time_since_epoch().count();
cout << "Seed: " << seed << '\n';
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
Seed: 1719419094840766564
152374513
138626048
58918956
808576448
278437183

Better Seeding

Seed with random_device

random_device rd;
auto seed = rd();
minstd_rand0 a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
1127218374
58477984
1439450409
1439740608
2022147907

You can seed with random_device, if you know that it’s truly random.

Not good enough.

Caution

Resist the urge to create your own distribution using division or modulus. It’s harder than you think. Just use the standard distributions.

minstd_rand r;
int first_half = 0;
for (int i=0; i<100'000'000; i++)
    if (r() % 1'000'000'000 < 500'000'000)
        first_half++;
cout << first_half << '\n';
53435616
Why didn’t that work?

minstd_rand, on this computer, produces a number 1…2,147,483,646. If you take that mod a billion, the range 0…147,473,646 gets represented an extra time.

Distributions

uniform_int_distribution

auto seed = random_device()();  //❓❓❓
mt19937 gen(seed);
uniform_int_distribution<int> dist(1,6);
for (int y=0; y<10; y++) {
    for (int x=0; x<40; x++)
        cout << dist(gen) << ' ';
    cout << '\n';
}
6 2 6 2 2 4 3 2 2 2 2 4 2 3 6 2 5 2 2 4 2 2 5 3 3 2 6 4 3 1 6 6 3 2 4 5 1 5 3 3 
5 5 5 1 1 4 2 6 3 5 6 1 1 3 1 6 4 4 1 4 5 1 4 2 2 3 6 5 6 2 1 4 4 1 6 2 4 4 2 5 
1 3 2 6 6 1 2 1 5 5 6 4 3 4 4 1 3 6 2 6 3 5 4 1 4 2 5 5 5 5 4 4 1 3 6 2 4 3 1 3 
4 5 2 2 1 1 5 6 1 4 5 4 6 3 4 1 3 2 4 5 2 1 4 6 6 3 2 4 1 1 1 1 4 4 4 2 5 2 6 5 
3 5 4 6 6 2 3 6 2 4 2 6 6 2 2 5 1 6 4 1 4 5 2 6 5 6 1 5 3 4 5 3 2 5 3 6 4 6 5 2 
6 5 3 3 4 6 5 4 5 2 3 2 5 4 5 1 5 2 5 6 4 2 1 3 4 6 4 4 6 3 5 6 3 1 6 5 5 4 6 2 
6 3 3 3 4 4 2 2 2 1 1 4 5 4 6 6 4 2 5 6 1 4 3 1 4 6 6 6 1 5 1 4 4 1 3 6 5 6 6 4 
2 6 1 3 1 1 5 5 5 2 1 1 5 2 2 3 2 2 4 4 2 2 2 3 5 1 2 5 2 6 2 5 2 3 1 5 6 5 2 6 
5 1 5 4 1 1 1 1 2 2 1 6 2 4 4 1 4 3 5 4 4 1 3 3 1 3 3 5 1 2 1 1 5 6 1 2 5 6 1 4 
3 2 5 3 6 1 6 6 1 3 1 2 5 2 4 5 2 5 4 5 1 3 6 4 3 6 6 6 3 4 3 6 2 2 5 1 5 3 4 5 

uniform_real_distribution

auto seed = random_device()();
ranlux48 gen(seed);
uniform_real_distribution<> dist(18.0, 25.0);
for (int y=0; y<5; y++) {
    for (int x=0; x<10; x++)
        cout << fixed << setprecision(3) << dist(gen) << ' ';
    cout << '\n';
}
20.936 18.222 20.338 18.948 18.898 19.915 24.797 18.563 18.796 18.598 
22.542 21.035 22.008 20.619 18.615 18.093 20.027 20.692 21.042 24.286 
23.815 22.673 22.315 23.093 20.451 23.268 18.408 21.141 19.629 22.327 
22.993 19.097 18.494 23.979 20.016 19.042 21.365 22.656 18.133 18.268 
24.670 23.830 23.264 21.179 19.193 18.468 19.135 19.708 19.897 18.228 
OMG—what’s that <> doing there?

uniform_real_distribution’s template argument defaults to double, because … real.

Boolean Values

Yield true 42% of time:

random_device rd;
knuth_b gen(rd());
bernoulli_distribution dist(0.42);
constexpr int nrolls = 1'000'000;

int count=0;
for (int i=0; i<nrolls; i++)
    if (dist(gen))
        count++;

cout << "true: " << count*100.0/nrolls << "%\n";
true: 41.9983%

Histogram

random_device rd;
mt19937_64 gen(rd());
normal_distribution<> dist(21.5, 1.5);
map<int,int> tally;
for (int i=0; i<10000; i++)
    tally[dist(gen)]++;
for (auto p : tally)
    cout << p.first << ": " << string(p.second/100,'#') << '\n';
15: 
16: 
17: 
18: ###
19: ##########
20: #####################
21: ##########################
22: ####################
23: ###########
24: ###
25: 
26: 

Passwords

random_device rd;
auto seed = rd();
ranlux24 gen(seed);
uniform_int_distribution<char> dist('A','~');
for (int y=0; y<8; y++) {
    string pw;
    for (int x=0; x<32; x++)
        pw += dist(gen);
    cout << "Password: " << pw << '\n';
}
Password: rjbIPN|ZWFZ|ypPJ_|IG~VBywe_rFVMF
Password: vRzjHXbMRJZM_iDvzOVDrvQ]|sK{ATA}
Password: \MjMSlt~DyamvVLxZO[nmoeMtTtGnFoA
Password: vXgPm|hO|BZMuDI]kIcJAeYz{QMZkPlt
Password: QD[CX[}RkIQWhRqiEu^}zmaMMRw|SUx\
Password: y{^yzmQLngL\vTUbeLfrqpOdLx^ul`G~
Password: `d_oIuJYQP}cGSdrMbDRcmov`vDulihE
Password: imrQP~tpBdFfdT{Vh\O^XODETguYbF|P

Even though we’re using uniform_int_distribution, which has int right there in its name, it’s uniform_int_distribution<char>, so we get characters. Think of them as 8-bit integers that display differently.