In-class Exercise Relational Algebra Consider the following schema:

Suppliers(<u>sid: integer</u>, sname: string, address: string) Parts(<u>pid: integer</u>, pname: string, color: string) Catalog(<u>sid: integer</u>, <u>pid: integer</u>, cost: real)

The key fields are underlined, and the domain of each field is listed after the field name. Therefore *sid* is the key for Suppliers, *pid* is the key for Parts, and *sid* and *pid* together form the key for Catalog. The Catalog relation lists the prices charged for parts by Suppliers. Write the following queries in relational algebra.

1. Find the *names* of suppliers who supply some red part.

2. Find the *sid*s of suppliers who supply some red or green part.

3. Find the *sids* of suppliers who supply some red part or are at 221 Packer Street.

4. Find the *sids* of suppliers who supply some red part and some green part.

5. Find the *sids* of suppliers who supply every part.

6. Find the *sids* of suppliers who supply every red part.

7. Find the *sids* of suppliers who supply every red or green part.

8. Find the *sids* of suppliers who supply every red part or supply every green part.

9. Find pairs of *sid*s such that the supplier with the first *sid* charges more for some part than the supplier with the second *sid*.

10. Find the *pid*s of parts supplied by at least two different suppliers.

11. Find the *pid*s of the most expensive parts supplied by suppliers named Yosemite Sham.

Consider the following schema:

Suppliers(*sid:* integer, *sname:* string, *address:* string) Parts(*pid:* integer, *pname:* string, *color:* string) Catalog(*sid:* integer, *pid:* integer, *cost:* real)

The key fields are underlined, and the domain of each field is listed after the field name. Therefore *sid* is the key for suppliers, *pid* is the key for Parts, and *sid* and *pid* together form the key for Catalog. The Catalog relation lists the prices charged for parts by Suppliers. Write the following queries in relational algebra.

1. Find the *names* of suppliers who supply some red part.

 $\pi_{sname}(\pi_{sid}((\pi_{pid}\sigma_{color=_'red'}Parts) \bowtie Catalog) \bowtie Suppliers)$

Catalog

SID	PID	Cost
1	1	\$10.00
1	2	\$20.00
1	3	\$30.00
1	4	\$40.00
1	5	\$50.00
2	1	\$9.00
2	3	\$34.00
2	5	\$48.00

Parts

PID	Pname	Color
1	Red1	Red
2	Red2	Red
3	Green1	Green
4	Blue1	Blue
5	Red3	Red

SID	Sname	Address
1	Yosemite Sham	Devil's canyon, AZ
2	Wiley E. Coyote	RR Asylum, NV
3	Elmer Fudd	Carrot Patch, MN

Ok, let's break this down.

 $\sigma_{color=_'red'}$ Parts gives us

PID	Pname	Color
1	Red1	Red
2	Red2	Red
5	Red3	Red

$\pi_{pid}\sigma_{color=_'red'}$ Parts gives us

PID
1
2
5

 $((\pi_{pid}\sigma_{color=_'red'}Parts) \bowtie Catalog)$ gives us:

SID	PID	Cost
1	1	\$10.00
1	2	\$20.00
1	5	\$50.00
2	1	\$9.00
2	5	\$48.00

 $\pi_{sid}((\pi_{pid}\sigma_{color=_'red'}Parts) \bowtie Catalog)$ gives us:

SID
1
2

 $\pi_{sid}((\pi_{pid}\sigma_{color=_'red'}Parts) \bowtie Catalog) \bowtie Suppliers)$ gives us:

SID	Sname	Address
1	Yosemite Sham	Devil's canyon, AZ
2	Wiley E. Coyote	RR Asylum, NV

And finally $\pi_{sname}(\pi_{sid}((\pi_{pid}\sigma_{color=_red}Parts) \bowtie Catalog) \bowtie Suppliers)$

Gives us:

Sname
Yosemite Sham
Wiley E. Coyote

2. Find the *sid*s of suppliers who supply some red or green part.

 $\pi_{sid}(\pi_{pid}(\sigma_{color='red'Vcolor='green'} Parts) \bowtie catalog)$

3. Find the *sids* of suppliers who supply some red part or are at 221 Packer Street.

 $\rho(R1, \pi_{sid}((\pi_{pid}\sigma_{color='red'}Parts) \bowtie Catalog)))$ $\rho(R2, \pi_{sid}\sigma_{address='221PackerStreet'}Suppliers)$ $R1 \cup R2$

4. Find the *sid*s of suppliers who supply some red part and some green part.

 $\rho(R1, \pi_{sid}((\pi_{pid} \sigma_{color='red'} Parts) \bowtie | Catalog)))$ $\rho(R2, \pi_{sid}((\pi_{pid} \sigma_{color='green'} Parts) \bowtie Catalog)))$ $R1 \cap R2$

5. Find the *sids* of suppliers who supply every part.

 $(\pi_{sid,pid} Catalog)/(\pi_{pid} Parts)$

Given:

Parts

PID	Pname	Color
1	Red1	Red
2	Red2	Red
3	Green1	Green
4	Blue1	Blue
5	Red3	Red

Catalog

SID	PID	Cost
1	1	\$10.00
1	2	\$20.00
1	3	\$30.00
1	4	\$40.00
1	5	\$50.00
2	1	\$9.00
2	3	\$34.00
2	5	\$48.00
3	1	\$11.00

 π_{pid} Parts gives us:

PID	
1	
2	
3	
4	
5	

 $\pi_{sid,pid}$ Catalog gives us:

SID	PID
1	1
1	2
1	3
1	2 3 4 5
1	5
2	1
2	3 5
2 2 2 3	5
3	1

 $(\pi_{sid,pid} Catalog)/(\pi_{pid} Parts)$

Asks the question – what sids in catalog contain all the part numbers in the divisor. There is only one sid that has all the part numbers, 1.

6. Find the *sids* of suppliers who supply every red part.

 $(\pi_{sid,pid} Catalog)/(\pi_{pid} \sigma_{color='red'} Parts)$

7. Find the *sid*s of suppliers who supply every red or green part.

 $(\pi_{sid,pid} Catalog)/(\pi_{pid} \sigma_{color='red' \lor color='green'} Parts)$

Let's look at this one:

Catalog

SID	PID	Cost
1	1	\$10.00
1	2	\$20.00
1	3	\$30.00
1	4	\$40.00
1	5	\$50.00
2	1	\$9.00
2	3	\$34.00
2	5	\$48.00
3	1	\$11.00

Parts

PID	Pname	Color
1	Red1	Red
2	Red2	Red
3	Green1	Green
4	Blue1	Blue
5	Red3	Red

 $(\pi_{sid,pid} Catalog)/(\pi_{pid} \sigma_{color='red' \lor color='green'} Parts)$ then says :

What supplier supplies all 4 of those parts? The answer is only supplier 1.

8. Find the *sid*s of suppliers who supply every red part or supply every green part.

 $\rho(R1, ((\pi_{sid,pid} Catalog)/(\pi_{pid} \sigma_{color='red'} Parts)))$ $\rho(R2, ((\pi_{sid,pid} Catalog)/(\pi_{pid} \sigma_{color='green'} Parts)))$ $R1 \cup R2$

OK – lets look at this one then:

Catalog

SID	PID	Cost
1	1	\$10.00
1	2	\$20.00
1	3	\$30.00
1	4	\$40.00
1	5	\$50.00
2	1	\$9.00
2	3	\$34.00
2	5	\$48.00
3	1	\$11.00

Parts

PID	Pname	Color
1	Red1	Red
2	Red2	Red
3	Green1	Green
4	Blue1	Blue
5	Red3	Red

 $\pi_{pid} \sigma_{color='red'}$ Parts gives us 1,2,5

 $\pi_{sid,pid}$ Catalog)/($\pi_{pid} \sigma_{color='red'}$ Parts) gives us 1

 $\pi_{pid} \sigma_{color='green'}$ Parts gives us 3

 $\pi_{sid,pid}$ Catalog)/($\pi_{pid} \sigma_{color='green'}$ Parts) gives us 1,2

The union of the 2 give us 1,2

9. Find pairs of *sids* such that the supplier with the first *sid* charges more for some part than the supplier with the second *sid*.

 $\rho(R1, Catalog)$ $\rho(R2, Catalog)$ $\pi_{R1.sid, R2.sid}(\sigma_{R1.pid=R2.pid \land R1.sid != R2.sid \land R1.cost > R2.cost}(R1 \times R2))$

Let's look at an example of this one:

Catalog:

SID	PID	Cost
1	1	\$10.00
2	1	\$9.00
2	3	\$34.00
3	1	\$11.00

R1 x R2 gives us:

SID	PID	Cost	SID	PID	Cost
1	1	\$10.00	1	1	\$10.00
1	1	\$10.00	2	1	\$9.00
1	1	\$10.00	2	3	\$34.00
1	1	\$10.00	3	1	\$11.00
2	1	\$9.00	1	1	\$10.00
2	1	\$9.00	2	1	\$9.00
2	1	\$9.00	2	3	\$34.00
2	1	\$9.00	3	1	\$11.00
2	3	\$34.00	1	1	\$10.00
2	3	\$34.00	2	1	\$9.00
2	3	\$34.00	2	3	\$34.00
2	3	\$34.00	3	1	\$11.00
3	1	\$11.00	1	1	\$10.00
3	1	\$11.00	2	1	\$9.00
3	1	\$11.00	2	3	\$34.00
3	1	\$11.00	3	1	\$11.00

At this point, we are selecting for the 3 and clauses. The first ($\sigma_{R1.pid=R2.pid}$) gives us:

SID	PID	Cost	SID	PID	Cost
1	1	\$10.00	1	1	\$10.00
1	1	\$10.00	2	1	\$9.00
1	1	\$10.00	3	1	\$11.00
2	1	\$9.00	1	1	\$10.00
2	1	\$9.00	2	1	\$9.00
2	1	\$9.00	3	1	\$11.00
2	3	\$34.00	2	3	\$34.00
3	1	\$11.00	1	1	\$10.00
3	1	\$11.00	2	1	\$9.00
3	1	\$11.00	3	1	\$11.00

The second and clause ($\sigma_{R1.pid=R2.pid \land R1.sid != R2.sid}$) gives us:

SID	PID	Cost	SID	PID	Cost
1	1	\$10.00	3	1	\$11.00
1	1	\$10.00	2	1	\$9.00
2	1	\$9.00	1	1	\$10.00
2	1	\$9.00	3	1	\$11.00
3	1	\$11.00	1	1	\$10.00
3	1	\$11.00	2	1	\$9.00

Adding in the third clause ($\sigma_{R1.pid=R2.pid \land R1.sid != R2.sid \land R1.cost > R2.cost$) gives us:

SID	PID	Cost	SID	PID	Cost
1	1	\$10.00	2	1	\$9.00
3	1	\$11.00	1	1	\$10.00
3	1	\$11.00	2	1	\$9.00

And finally, projecting the pairs gives us:

SID	SID
1	2
3	1
3	2

10. Find the *pid*s of parts supplied by at least two different suppliers.

 $\rho(R1, Catalog)$ $\rho(R2, Catalog)$ $\pi_{R1.pid} \sigma_{R1.pid=R2.pid \land R1.sid != R2.sid} (R1 \times R2)$

Using the following:

SID	PID	Cost
1	1	\$10.00
2	1	\$9.00
2	3	\$34.00
3	1	\$11.00

R1 x R2 gives us:

SID	PID	Cost	SID	PID	Cost
1	1	\$10.00	1	1	\$10.00
1	1	\$10.00	2	1	\$9.00
1	1	\$10.00	2	3	\$34.00
1	1	\$10.00	3	1	\$11.00
2	1	\$9.00	1	1	\$10.00
2	1	\$9.00	2	1	\$9.00
2	1	\$9.00	2	3	\$34.00
2	1	\$9.00	3	1	\$11.00
2	3	\$34.00	1	1	\$10.00
2	3	\$34.00	2	1	\$9.00
2	3	\$34.00	2	3	\$34.00
2	3	\$34.00	3	1	\$11.00
3	1	\$11.00	1	1	\$10.00
3	1	\$11.00	2	1	\$9.00
3	1	\$11.00	2	3	\$34.00
3	1	\$11.00	3	1	\$11.00

σ_{R1.pid=R2.pid} gives us:

SID	PID	Cost	SID	PID	Cost
1	1	\$10.00	1	1	\$10.00
1	1	\$10.00	2	1	\$9.00
1	1	\$10.00	3	1	\$11.00
2	1	\$9.00	1	1	\$10.00
2	1	\$9.00	2	1	\$9.00
2	1	\$9.00	3	1	\$11.00
2	3	\$34.00	2	3	\$34.00
3	1	\$11.00	1	1	\$10.00
3	1	\$11.00	2	1	\$9.00
3	1	\$11.00	3	1	\$11.00

σ_{R1.pid=R2.pid ∧ R1.sid} != R2.sid gives us:

SID	PID	Cost	SID	PID	Cost
1	1	\$10.00	2	1	\$9.00
1	1	\$10.00	3	1	\$11.00
2	1	\$9.00	1	1	\$10.00
2	1	\$9.00	3	1	\$11.00
3	1	\$11.00	1	1	\$10.00
3	1	\$11.00	2	1	\$9.00

Projecting on PID gives us a single part number – 1 (eliminating the duplicates)

11. Find the *pid*s of the most expensive parts supplied by suppliers named Yosemite Sham.

 $\begin{array}{l} \rho(R1, \ \pi_{sid} \ \sigma_{sname='YosemiteSham'} \ Suppliers) \\ \rho(R2, R1 \bowtie Catalog) \\ \rho(R3, R2) \\ \rho(R4(1 \rightarrow sid, 2 \rightarrow pid, 3 \rightarrow cost), \ \sigma_{R3.cost < R2.cost} (R3 \times R2)) \\ \pi_{pid}(R2 - \pi_{sid,pid,cost} R4) \end{array}$

Given:

Suppliers

SID	Sname	Address
1	Wiley E. Coyote	Acme Testing Ground, NV
2	Yosemite Sham	Devil's Canyon, AZ
3	Elmer Fudd	Carrot Patch, MN

and Catalog:

SID	PID	Cost
1	1	\$10.00
2	1	\$9.00
2	2	\$21.00
2	3	\$34.00
3	1	\$11.00

 $\rho(R1, \pi_{sid} \sigma_{sname='YosemiteSham'} Suppliers)$

Gives us the value 2.

 $\rho(R2,R1 \bowtie Catalog)$

Gives us:

SID	PID	Cost
2	1	\$9.00
2	2	\$21.00
2	3	\$34.00

Let's look at: $\rho(R4(1 \rightarrow sid, 2 \rightarrow pid, 3 \rightarrow cost), \sigma_{R3.cost < R2.cost}(R3 \times R2))$

R3 x R2

SID	PID	Cost	SID	PID	Cost
2	1	\$9.00	2	1	\$9.00
2	1	\$9.00	2	2	\$21.00
2	1	\$9.00	2	3	\$34.00
2	2	\$21.00	2	1	\$9.00
2	2	\$21.00	2	2	\$21.00
2	2	\$21.00	2	3	\$34.00
2	3	\$34.00	2	1	\$9.00
2	3	\$34.00	2	2	\$21.00
2	3	\$34.00	2	3	\$34.00

 $\sigma_{R3.cost < R2.cost}(R3 \times R2))$ gives us:

SID	PID	Cost	SID	PID	Cost
2	1	\$9.00	2	2	\$21.00
2	1	\$9.00	2	3	\$34.00
2	2	\$21.00	2	3	\$34.00

 $\rho(R4(1 \rightarrow sid, 2 \rightarrow pid, 3 \rightarrow cost), \sigma_{R3.cost < R2.cost}(R3 \times R2))$

Gives us:

SID	PID	Cost
2	1	\$9.00
2	2	\$21.00

 $R2 - \pi_{sid,pid,cost} R4$ gives us:

SID	PID	Cost
2	3	\$34.00

And projecting the PID gives us 3 as Yosemite Sham's most expensive part.