
SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.1

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS

[THREADS]

Shrideep Pallickara
Computer Science

Colorado State University

September 13, 2018 L8.1

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.2
Professor: SHRIDEEP PALLICKARA

Frequently asked questions from the previous class
survey

September 13, 2018

¨ Is there a separate stack for a process?
¨ Threads

¤References to objects, when do they terminate, how many is too many,
more threads than cores, code example?

¨ Cores and memory sharing
¨ Any way to predetermine order of diverse threads for

accesses?
¨ Fork()-exec() and threads

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.2

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.3
Professor: SHRIDEEP PALLICKARA

Topics covered in this lecture

¨ User- and kernel-level threads
¨ Thread Models
¨ Thread Libraries

September 13, 2018

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.4
Professor: SHRIDEEP PALLICKARA

Going about writing multithreaded programs [1/2]

September 13, 2018

¨ The key idea is to write a concurrent program — one with
many simultaneous activities
¤As a set of sequential streams of execution, or threads, that interact

and share results in very precise ways

¨ Subdivide functionality into multiple separate & concurrent
tasks

¨ Threads let us define a set of tasks that run concurrently while
the code for each task is sequential

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.3

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.5
Professor: SHRIDEEP PALLICKARA

Going about writing multithreaded programs [2/2]

September 13, 2018

¨ Managing data manipulated by tasks
¤Split to run on separate cores. BUT

n Examine data dependencies between the tasks

¨ Threaded programs on many core systems have many different
execution paths
¤Which may or may not reveal bugs
¤ Testing and debugging is inherently harder

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

USER-LEVEL THREADS
September 13, 2018 L8.6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.4

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.7
Professor: SHRIDEEP PALLICKARA

User-level threads: Overview

September 13, 2018

Kernel

User
space

Kernel
space

Process Thread

Thread
table

Process
table

Runtime System

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.8
Professor: SHRIDEEP PALLICKARA

User threads are invisible to the kernel and have low
overhead

September 13, 2018

¨ Compete among themselves for resources allocated to their
encapsulating process

¨ Scheduled by a thread runtime system that is part of the process
code

¨ Programs link to a special library
¤ Each library function is enclosed by a jacket
¤ Jacket function calls thread runtime to do thread management

n Before (and possibly after) calling jacketed library function.

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.5

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.9
Professor: SHRIDEEP PALLICKARA

User level thread libraries: Managing blocking calls

September 13, 2018

¨ Replace potentially blocking calls with non-blocking ones

¨ If a call does not block, the runtime invokes it

¨ If the call may block
① Place thread on a list of waiting threads
② Add call to list of actions to try later
③ Pick another thread to run

¨ ALL control is invisible to user and OS

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.10
Professor: SHRIDEEP PALLICKARA

Disadvantages of the user level threads model (1)

September 13, 2018

¨ Assumes that the runtime will eventually regain control, this is
thwarted by:
¤CPU bound threads
¤ Thread that rarely performs library calls …

n Runtime can’t regain control to schedule other threads

¨ Programmer must avoid lockout situations
¤ Force CPU-bound thread to yield control

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.6

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.11
Professor: SHRIDEEP PALLICKARA

Disadvantages of the user level threads model (2)

September 13, 2018

¨ Can only share processor resources allocated to encapsulating
process
¤ Limits available parallelism

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

KERNEL THREADS
September 13, 2018 L8.12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.7

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.13
Professor: SHRIDEEP PALLICKARA

Kernel-level threads: Overview

September 13, 2018

Kernel

User
space

Kernel
space

Process Thread

Thread
table

Process table

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.14
Professor: SHRIDEEP PALLICKARA

Kernel threads

September 13, 2018

¨ Kernel is aware of kernel-level threads as schedulable entities
¤Kernel maintains a thread table to keep track of all threads in the

system

¨ Compete system wide for processor resources
¤Can take advantage of multiple processors

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.8

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.15
Professor: SHRIDEEP PALLICKARA

Kernel threads:
Management costs

September 13, 2018

¨ Scheduling is almost as expensive as processes
¤Synchronization and data sharing less expensive than processes

¨ More expensive to manage than user-level threads

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.16
Professor: SHRIDEEP PALLICKARA

Hybrid thread models

September 13, 2018

¨ Write programs in terms of user-level threads

¨ Specify number of schedulable entities associated with process
¤Mapping at runtime to achieve parallelism

¨ Level of user-control over mapping
¤ Implementation dependent

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.9

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

THREAD MODELS
September 13, 2018 L8.17

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.18
Professor: SHRIDEEP PALLICKARA

The Many-to-One threading model

User threads

k Kernel thread

September 13, 2018

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.10

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.19
Professor: SHRIDEEP PALLICKARA

Many-to-One Model maps many user level threads
to 1 kernel thread

September 13, 2018

¨ Thread management done by thread library in user-space

¨ What happens when one thread makes a blocking system call?
¤ The entire process blocks!

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.20
Professor: SHRIDEEP PALLICKARA

Many-to-One Model maps many user level threads
to 1 kernel thread

September 13, 2018

¨ Only 1 thread can access kernel at a time
¤Multiple threads unable to run in parallel on multi-processor/core

system

¨ E.g.: Solaris Green threads, GNU Portable threads

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.11

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.21
Professor: SHRIDEEP PALLICKARA

The One-to-One threading model

k k k

September 13, 2018

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.22
Professor: SHRIDEEP PALLICKARA

One-to-One Model:
Maps each user thread to a kernel thread

September 13, 2018

¨ More concurrency
¤Another thread can continue to run, when a thread invokes a blocking

system call

¨ Threads run in parallel on multiprocessors

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.12

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.23
Professor: SHRIDEEP PALLICKARA

One-to-One Model:
Maps each user thread to a kernel thread

September 13, 2018

¨ Disadvantages:
¤ There is an overhead for kernel thread creation

n Multiple user threads can degrade application performance

¨ Supported by:
¤ Linux
¤Windows family: NT/XP/2000
¤Solaris 9 and up

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.24
Professor: SHRIDEEP PALLICKARA

Many-to-Many threading Model:
2-level is a variant of this

kk k kk k k

Many-to-Many Two-level
September 13, 2018

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.13

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.25
Professor: SHRIDEEP PALLICKARA

Many-to-Many model

September 13, 2018

¨ Multiplex many user-level threads on a smaller number of
kernel threads

¨ Number of kernel threads may be specific to
¤Particular application
¤Particular machine

¨ Supported in
¤ IRIX, HP-US, and Solaris (prior to version 9)

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.26
Professor: SHRIDEEP PALLICKARA

A comparison of the three models

Many-to-one One-to-One Many-to-Many

True
Concurrency

During blocking
system call?

Kernel thread
creation

Caveat

September 13, 2018

NO YES YES

Process Blocks Process DOES NOT
block

Process DOES NOT
block

Kernel thread
already exists

Kernel thread
creation overhead

Kernel threads
available

Use system calls
(blocking) with care

Don’t create too
many threads

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.14

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

THREAD LIBRARIES
September 13, 2018

Provide an API for creating and managing threads

L8.27

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.28
Professor: SHRIDEEP PALLICKARA

Thread libraries provide an API for managing
threads

¨ Includes functions for :
① Thread creation and destruction
② Enforcement of mutual exclusion
③ Conditional waiting

¨ Runtime system to manage threads
¤Users are not aware of this

September 13, 2018

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.15

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.29
Professor: SHRIDEEP PALLICKARA

User level thread libraries

¨ No kernel support

¨ Library code & data structures reside in user space

¨ Invoking a library function does not result in a system call
¤ Local function call in user space

September 13, 2018

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.30
Professor: SHRIDEEP PALLICKARA

Kernel level thread libraries

¨ Library code & data structures in kernel space

¨ Invoking library function typically results in a system call

September 13, 2018

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.16

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.31
Professor: SHRIDEEP PALLICKARA

Thread libraries provide an API for creating and
managing threads

User level library Kernel level
library

Library code and data
structures

Can invocation of library
function result in system
call?

OS support

September 13, 2018

Reside in
user space

Reside in
kernel space

NO YES

NO YES

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.32
Professor: SHRIDEEP PALLICKARA

Dominant thread libraries (1)

September 13, 2018

¨ POSIX pthreads
¤ Extends POSIX standard (IEEE 1003.1c)
¤Provided as user- or kernel-level library
¤Solaris, Mac OS X, Linux

¨ Win32 thread library
¤Kernel-level library

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.17

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.33
Professor: SHRIDEEP PALLICKARA

Dominant thread libraries (2)

September 13, 2018

¨ Java threading API
¤ Implemented using thread library on host system

n On Windows: Threads use Win32 API
n UNIX/Linux: Uses pthreads

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

JAVA THREADS

Harnesses the thread model of the host OS

September 13, 2018 L8.34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.18

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.35
Professor: SHRIDEEP PALLICKARA

Java threads example

September 13, 2018

¨ We will use a thread to perform summation of a non-negative
integer

sum = i
i=0

N

∑

• If N=5, we compute the sum of 0 through 5
• 0 + 1 + 2 + 3 + 4 + 5 = 15

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.36
Professor: SHRIDEEP PALLICKARA

Java

¨ Designed from the ground-up to support concurrent
programming
¤Basic concurrency support in the language and class libraries

¨ Java 1.5 and higher
¤Powerful high-level concurrency APIs

September 13, 2018

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.19

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.37
Professor: SHRIDEEP PALLICKARA

JVMs harness the thread models of the host OS

September 13, 2018

¨ Windows XP has a one-to-one model
¤So a thread maps to a kernel thread

¨ Tru64 UNIX uses the many-to-many model
¤ Java threads mapped accordingly

¨ Solaris
¤ Initially, used Green Threads à many-to-one
¤Version 9 onwards: one-to-one model

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.38
Professor: SHRIDEEP PALLICKARA

Creating Threads in Java

September 13, 2018

① Create a new class derived from Thread
¤ Override its run() method

② More commonly used, Runnable interface
¤ Has 1 method run()
¤ Create new Thread class by passing a Runnable object to its

constructor

③ The Executor interface (java.util.concurrent)
¤ Has 1 method execute()

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.20

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.39
Professor: SHRIDEEP PALLICKARA

Java Threads: Interrupts

September 13, 2018

¨ Invoke interrupt() on the Thread

¨ Threads must support their own interruption

¨ An interruptible thread needs to
① Catch the InterruptedException

n Methods such as sleep() throw this, and are designed to cancel the
operation and return

② Periodically invoke Thread.interrupted() to see if it has been
interrupted

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.40
Professor: SHRIDEEP PALLICKARA

Java Threads: joins

September 13, 2018

¨ If thread object threadA is currently executing

¨ Another thread can call threadA.join()
¤Causes current thread to pause execution until threadA terminates

¨ Variants of join()
¤Specify a waiting period

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.21

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.41
Professor: SHRIDEEP PALLICKARA

Using Java Threads [1/3]

September 13, 2018

class Sum {
private int sum;

public int get() {
return sum;

}

public void set(int sum) {
this.sum = sum;

}
}

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.42
Professor: SHRIDEEP PALLICKARA

Using Java Threads [2/3]

September 13, 2018

class Summation implements Runnable {
private int upper;
private Sum sumValue;

public Summation(int upper, Sum sumValue) {
this.upper = upper;
this.sumValue = sumValue;

}

public void run() {
int sum = 0;
for (int i = 0; i <= upper; i++)

sum += i;

sumValue.set(sum);
}

}

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.22

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.43
Professor: SHRIDEEP PALLICKARA

Using Java Threads [3/3]

September 13, 2018

public class Driver {
public static void main(String[] args) {

Sum sumObject = new Sum();
int upper = Integer.parseInt(args[0]);

Thread worker = new Thread(new Summation(upper, sumObject));
worker.start();
try {

worker.join();
} catch (InterruptedException ie) {

ie.printStacktrace()
}
System.out.println("The sum of " + upper + " is " +

sumObject.get());
}

}

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

POSIX THREADS
This is a specification for thread behavior,
not an implementation

September 13, 2018 L8.44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.23

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.45
Professor: SHRIDEEP PALLICKARA

POSIX thread management functions:
Return 0 if successful

POSIX function Description

pthread_cancel Terminate another thread
pthread_create Create a thread
pthread_detach Set thread to release resources
pthread_exit Exit a thread without exiting process
pthread_kill Send a signal to a thread
pthread_join Wait for a thread
pthread_self Find out own thread ID

September 13, 2018

Functions return a non-ZERO error code
Do NOT set errno

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.46
Professor: SHRIDEEP PALLICKARA

POSIX: Thread creation
pthread_create()

¨ Automatically makes the thread runnable without a start
operation

¨ Takes 3 parameters:
① Points to ID of newly created thread

②② Attributes for the thread
n Stack size, scheduling information, etc.

③ Name of function that the thread calls when it begins execution

September 13, 2018

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.24

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.47
Professor: SHRIDEEP PALLICKARA

POSIX: Detaching and Joining

¨ When a thread exits it does not release its resources
¤Unless it is a detached thread

¨ pthread_detach()
¤Sets internal options to specify that storage for thread can be

reclaimed when it exits
¤1 parameter: Thread ID of the thread to detach

September 13, 2018

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.48
Professor: SHRIDEEP PALLICKARA

POSIX: Thread joins

September 13, 2018

¨ Threads that are not detached are joinable

¨ Undetached threads don’t release resources until
¤ Another thread calls pthread_join for them
¤ Process exits

¨ pthread_join
¤ Takes ID of the thread to wait for
¤ Suspends calling thread till target terminates
¤ Similar to waitpid at the process level
¤ pthread_join(pthread_self())?

n Deadlock!

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.25

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.49
Professor: SHRIDEEP PALLICKARA

POSIX: Exiting and cancellation

September 13, 2018

¨ If a process calls exit, all threads terminate

¨ Call to pthread_exit causes only the calling thread to
terminate

¨ Threads can force other threads to return through a cancellation
mechanism
¤ pthread_cancel: takes thread ID of target
¤Depends on type and state of thread

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.50
Professor: SHRIDEEP PALLICKARA

More info on pthread_cancel

¨ State: pthread_setcancelstate to change state
§ PTHREAD_CANCEL_ENABLE
§ PTHREAD_CANCEL_DISABLE

n Cancellation requests are held pending

¨ Cancellation type allows thread to control when to exit
§ PTHREAD_CANCEL_ASYNCHRONOUS

n Any time
§ PTHREAD_CANCEL_DEFFERED

n Only at specified cancellation points

September 13, 2018

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.26

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.51
Professor: SHRIDEEP PALLICKARA

Using Pthreads (1)

September 13, 2018

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */

void *runner(void *param); /* the thread */

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.52
Professor: SHRIDEEP PALLICKARA

Using Pthreads (2)

September 13, 2018

int main(int argc, char *argv[]){

pthread_t tid; pthread_attr_t attr;
/* get the default attributes */
pthread_attr_init(&attr);

/* create the thread */
pthread_create(&tid, &attr, runner, argv[1]);

/* now wait for the thread to exit */
pthread_join(tid, NULL);

printf("sum = %d\n",sum);
}

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.27

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.53
Professor: SHRIDEEP PALLICKARA

Using Pthreads (3)

September 13, 2018

/**
* The thread will begin control in this function
*/
void *runner(void *param)
{
int i, upper = atoi(param);
sum = 0;

if (upper > 0) {
for (i = 1; i <= upper; i++)

sum += i;
}

pthread_exit(0);
}

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.54
Professor: SHRIDEEP PALLICKARA

Win32 Threads

September 13, 2018

¨ CreateThread
¤Security Information, size of stack, flag (start in suspended state?)

¨ WaitForSingleObject

¨ CloseHandle

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.28

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018]
Dept. Of Computer Science, Colorado State University

L8.55
Professor: SHRIDEEP PALLICKARA

The contents of this slide-set are based on the
following references

September 13, 2018

¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th

edition. John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 4]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition,
2014. Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 2].

¨ Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice
Hall ISBN-13: 978-0-13-042411-2. [Chapter 12]

¨ Thomas Anderson and Michael Dahlin. Operating Systems: Principles and
Practice, 2nd Edition. Recursive Books. ISBN: 0985673524/978-0985673529.
[Chapter 4]

