CS 301 - Lecture 22 Non-Determinism, **Universal Turing Machine** and Linear Bounded Automata Fall 2008

Review Context Free Caramars Derivations: leftmost and drivation trees Parsing and ambiguity Simplifications and Normal Forms Nondeterministic Pushdown Automata Pushdown Automata Puspretise of Context Free Garamars Derivations: leftmost free Garamars Porsperimest Pushdown Automata Pushdown Automata Pusning Lemma for context free Garamars Pergenties of Context Free Garamars Pergenties of Context Free Garamars Pushdown Automata Pumping Lemma for context free Garamars Pergenties of Context Free Garamars Pushdown Automata Pumping Lemma for context free Garamars Pumping Lemma for context free Garamars Pushdown Automata Pushdown Automata

- Properus of Context Pree Grammars

 Turing Machines

 Definition, Accepting Languages, and Computing Functions

 Combining Turing Machines and Turing's Thesis

 Turing Machine Variations

 Today: Non-Determinism, Universal Turing Machine and Linear Bounded Automata

Simulation

Deterministic machine:

- Keeps track of all possible computations
- Stores computations in a two-dimensional tape

Repeat

- Execute a step in each computation:
- If there are two or more choices in current computation:
 - 1. Replicate configuration
 - 2. Change the state in the replica

Theorem: NonDeterministic Machines have the same power with Deterministic machines

Remark:

The simulation in the Deterministic machine takes time exponential time compared to the NonDeterministic machine

A Universal Turing Machine

Solution: Universal Turing Machine

Attributes:

- Reprogrammable machine
- Simulates any other Turing Machine

Universal Turing Machine simulates any other Turing Machine *M*

Input of Universal Turing Machine:

Description of transitions of M

Initial tape contents of M

State Encoding					
States:	q_1	q_2	q_3	q_4	
Encoding:	↓ 1	↓ 11	↓ 111	1111	
Head Move Encoding					
Move:	$\stackrel{L}{\downarrow}$	$\stackrel{R}{\downarrow}$			
Encoding:	1	11			

	Transition Encoding
Transition :	$\delta(q_1, a) = (q_2, b, L)$
Encoding	10101101101
:	separator

Tape 1 contents of Universal Turing Machine:

encoding of the simulated machine M as a binary string of 0's and 1's

A Turing Machine is described with a binary string of O's and 1's

Therefore:

The set of Turing machines forms a language:

each string of the language is the binary encoding of a Turing Machine

Language of Turing Machines		
L = { 010100101,	(Turing Machine 1)	
00100100101111,	(Turing Machine 2)	
111010011110010101,		
}		

How Many Turing Machines Are There?

We now have a language L: Each string in L is a Turing Machine! How big is this language?

Equivalently... how many Turing machines are there? how many valid Java programs are there?

Not finite.... Are there degrees of infinity?

Countable Sets

Infinite sets are either:	Countable
	or
	Uncountable

Countable set:

Any finite set

or

Any Countably infinite set:

There is a one to one correspondence between elements of the set and Natural numbers

Naïve Proof	Better Approach
Rational numbers: $\frac{1}{1}, \frac{1}{2}, \frac{1}{3},$	$\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$
Correspondence:	$\frac{2}{1} \qquad \frac{2}{2} \qquad \frac{2}{3} \qquad \cdots$
Doesn't work: we will never count numbers with nominator 2: $\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \dots$	$\begin{array}{cccc} \frac{3}{1} & \frac{3}{2} & \cdots \\ \frac{4}{1} & \cdots \end{array}$

We proved:

the set of rational numbers is countable by describing an enumeration procedure

Definition

Let S be a set of strings

An enumeration procedure for S is a Turing Machine that generates all strings of S one by one

and

Each string is generated in finite time

Observation:

If for a set there is an enumeration procedure, then the set is countable

Example:

The set of all strings $\{a,b,c\}^+$ is countable

Proof:

We will describe an enumeration procedure

- 1. Produce all strings of length 1
- 2. Produce all strings of length 2
- 3. Produce all strings of length 3
- 4. Produce all strings of length 4

•••••

	$\left. \begin{array}{c} a\\ b\\ c \end{array} \right\}$ length 1
Produce strings in Proper Order :	aa ab ac ba bb length 2
	bc ca cb cc
	aaa aab aac length 3

Theorem: The set of all Turing Machines is countable

Proof: Any Turing Machine can be encoded with a binary string of 0's and 1's

Find an enumeration procedure for the set of Turing Machine strings

Enumeration Procedure:

Repeat

- 1. Generate the next binary string of 0's and 1's in proper order
- Check if the string describes a Turing Machine if YES: print string on output tape if NO: ignore string

Linear Bounded Automata LBAs

Linear Bounded Automata (LBAs) are the same as Turing Machines with one difference:

The input string tape space is the only tape space allowed to use

We define LBA's as NonDeterministic

Open Problem:

NonDeterministic LBA's have same power with Deterministic LBA's ?

Example languages accepted by LBAs:

$$L = \{a^n b^n c^n\}$$

$$L=\{a^{n!}\}$$

LBA's have more power than NPDA's

LBA's have also less power than Turing Machines

Read - Linz Chapter 1,2.1, 2.2, 2.3, (skip 2.4), 3, 4, 5, 6.1, 6.2, (skip 6.3), 7.1, 7.2, 7.3, (skip JFLAP Chapter 1, 2.1, (skip 2.2), 3, 4, 5, 6, 7, (skip 8), 9, (skip 10), 11.1 Next Lecture Topics From 11.1

- Recursive Languages and Recursively Enumerable Languages

Quiz 3 in Recitation on Wednesday 11/12 - Covers Linz 7.1, 7.2, 7.3, (skip 7.4), 8, and JFLAP 5,6,7

- Closed book, but you may bring one sheet of 8.5 x 11 inch paper with any notes you like.

- Quiz will take the full hour

- Homework - Homework Due Today
- New Homework Available by Friday Morning
- New Homework Due Next Thursday