

- Languages and Grammars - Alphabets, strings, languages - Regular Languages - Deterministic Finite and Nondeterministic Automata - Equivalence of NFA and DFA and Minimizing a DFA - Regular Expressions - Regular Grammars - Properties of Regular Languages - Languages that are not regular and the pumping lemma - Context Free Languages - Context Free Grammars - Derivations: leftmost, rightmost and derivation trees - Parsing and ambiguity - Simplifications and Normal Forms - Nondeterministic Pushdown Automata - Pushdown Automata and Context Free Grammars - Deterministic Pushdown Automata - Pumping Lemma for context free grammars - Properties of Context Free Grammars - Turing Machines - Definition, Accepting Languages, and Computing Functions - Combining Turing Machines and Turing's Thesis - Turing Machine Variations - Today: Non-Determinism, Universal Turing Machine and Linear Bounded Automata

NonDeterministic Machines simulate Standard (deterministic) Machines:

Every deterministic machine is also a nondeterministic machine

Deterministic machines simulate
NonDeterministic machines:
Deterministic machine:
Keeps track of all possible computations

Simulation

Deterministic machine:

- Keeps track of all possible computations
- Stores computations in a two-dimensional tape

Theorem: NonDeterministic Machines
have the same power with Deterministic machines

Remark:
The simulation in the Deterministic machine
takes time exponential time compared
to the NonDeterministic machine

A Universal Turing Machine

Solution: Universal Turing Machine

Attributes:

- Reprogrammable machine
- Simulates any other Turing Machine

Universal Turing Machine simulates any other Turing Machine M Input of Universal Turing Machine: Description of transitions of M Initial tape contents of M

A Turing Machine is described
with a binary string of O's and 1's
Therefore:
The set of Turing machines forms a language:
each string of the language is
the binary encoding of a Turing Machine

Tape 1 contents of Universal Turing Machine:
encoding of the simulated machine M as a binary string of 0's and 1's

Language of Turing Machines	
$L=\{010100101$,	(Turing Machine 1)
00100100101111,	(Turing Machine 2)
111010011110010101,
...... $\}$	

How Many Turing Machines Are There?
We now have a language L :
Each string in L is a Turing Machine!
How big is this language?
Equivalently...
how many Turing machines are there?
how many valid Java programs are there?
Not finite.... Are there degrees of infinity?

Countable set:
Any finite set
or
Any Countably infinite set:
There is a one to one correspondence between
elements of the set
and
Natural numbers

Better Approach					
$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	\cdots	
$\frac{2}{1}$	$\frac{2}{2}$	$\frac{2}{3}$	\cdots		
$\frac{3}{1}$	$\frac{3}{2}$	\cdots			
$\frac{4}{1}$	\cdots				

Definition

Let S be a set of strings

An enumeration procedure for S is a Turing Machine that generates all strings of S one by one and

Each string is generated in finite time

Example:
\quad The set of all strings $\{a, b, c\}^{+}$
is countable
Proof:
We will describe an enumeration procedure

Better procedure: Proper Order
1. Produce all strings of length 1
2. Produce all strings of length 2
3. Produce all strings of length 3
4. Produce all strings of length 4
.........

Theorem:The set of all Turing Machines is countable
Proof: Any Turing Machine can be encoded
with a binary string of O's and 1's
Find an enumeration procedure
for the set of Turing Machine strings

Linear Bounded Automata (LBAs)
are the same as Turing Machines
with one difference:

The input string tape space
is the only tape space allowed to use

We define LBA's as NonDeterministic

Open Problem:
NonDeterministic LBA's
have same power with
Deterministic LBA's?

Example languages accepted by LBAs:

$$
\begin{aligned}
L & =\left\{a^{n} b^{n} c^{n}\right\} \\
L & =\left\{a^{n!}\right\}
\end{aligned}
$$

LBA's have more power than NPDA's

LBA's have also less power than Turing Machines

What's Next

- Read
- Linz Chapter 1,2.1, 2.2, 2.3, (skip 2.4), 3, 4, 5, 6.1, 6.2, (skip 6.3), 7.1, 7.2, 7.3, (skip
7.4), 8, 9, 10, 11.1, and 11.2
- JFLAP Chapter 1, 2.1, (skip 2.2), 3, 4, 5, 6, 7, (skip 8), 9, (skip 10), 11.1
- Next Lecture Topics From 11.1
- Recursive Languages and Recursively Enumerable Languages
- Quiz 3 in Recitation on Wednesday 11/12
- Covers Linz 7.1, 7.2, 7.3, (skip 7.4), 8, and JFLAP 5,6,7
- Closed book, but you may bring one sheet of 8.5×11 inch paper with any notes you like.
- Quiz will take the full hour
- Homework
- Homework Due Today
- New Homework Available by Friday Morning
- New Homework Due Next Thursday

