
Network Service Models

CS457
Fall 2014

1

Topics

•  Circuit vs. Packet Switching
•  Best Effort Internet Model
•  Multiplexing/de-multiplexing

– Socket and ports
•  (chapters 1 and 2.5 onwards)
•  Link Layer Protocols

2

Circuit Switching
(e.g., Phone Network)

� Step 1: Source establishes connection to destination
� Connection setup signaling from src to dst
� Routers en route store path connection info (state)

� Step 2: Source sends data over the connection
� (Sometimes packets are called cells - cells are fixed size)
� No dst address in packets, since routers know path

� Step 3: When done, source tears down connection

3

Virtual Circuits (VC)
•  Need call setup/teardown for each call before data can

flow
•  Each packet carries VC identifier (not destination host

address)
•  Every router on src-dst path maintains “state” for each

passing connection
•  Link, router resources (bandwidth, buffers) may be

allocated to VC
•  Example network: ATM (Asynchronous Transfer

Mode)

4

VC Implementation

A VC consists of:
1.  Path from source to destination
2.  VC numbers, one number for each link along path
3.  Entries in forwarding tables in routers along path

�  Packet belonging to VC carries a VC number in
the header

�  VC number may change (and usually does) on
each link.
�  VCs are negotiated between neighboring routers

5

Forwarding Tables

6

12 22 32

1 2
3

VC number

interface
number

Incoming interface Incoming VC # Outgoing interface Outgoing VC #

1 12 3 22
2 63 1 18
3 7 2 17
1 97 3 87
… … … …

Forwarding table in R1:

Routers maintain connection state information!

R1 R2

What is the forwarding state in R2 for C1?

C1:

Advantages of Circuit Switching
• Easy to provide performance guarantees

– Bandwidth can be reserved along the entire path
– Fixed path means virtually constant latency

• Simple abstraction
– Reliable communication channel between hosts
– No worries about lost or out-of-order packets

• Simple forwarding
– Based on time slot, frequency or label
– No need for complex packet header
– Low per-packet overhead

7

Disadvantages of Circuit Switching
� With peak reservations, wasted BW

�  Idle resources during silent periods
� Unable to achieve gains from statistical multiplexing

� Blocked connections
� Connection refused when resources are not sufficient
� Unable to offer “okay” service to everybody

� Connection set-up delay
� No communication until a connection is set up (1 RTT)
� Unable to avoid extra latency for small data transfers

� Network state
� Network nodes must store per-connection state
� Unable to avoid per-connection storage and state

8

Packet Switching (e.g., Internet)
•  Messages divided into globally addressable

packets (aka datagrams)
– Each packet’s header contains a destination address

•  Packets may travel separately through network
– Packet forwarding based on the header
– Network nodes may store packets temporarily

•  Destination reconstructs the message

9

IP Service Model: Why Packet
Switching?

� In one word: Flexibility!
� Data traffic is bursty

� Remote login, email, video, voice, etc.
� Packets don’t waste reserved bandwidth

� No traffic exchanged during idle periods
� Packets better for multiplexing

� Different transfers share access to same links
� Packets can be delivered by almost anything

� Best effort service
� RFC 2549: IP over Avian Carriers (aka birds)

� … still, packet switching can be inefficient
� Extra header bits

10

Network Architecture: Internet vs.
POTS*

�  There is a fundamental architectural difference
between Internet and telephone network

�  POTS: Intelligent network, dumb terminals
�  Reliable, in-sequence, guaranteed delivery (bandwidth and

delay)
�  Internet: Dumb network, intelligent endpoints

�  Best effort delivery (unreliable, packets may arrive out of
sequence and duplicated, no bandwidth or delay
guarantees)

(*POTS: Plain Old Telephone System)

11

IP Service Model: Why Best-Effort?

�  Flexibility: Network does not dictate applications
�  IP means never having to say you’re sorry…

�  Don’t need to reserve bandwidth and memory
�  Don’t need to do error detection & correction
�  Don’t need to remember from one packet to next
�  Can’t get any simpler than that!

�  Easier to survive failures
�  Transient disruptions are okay during failover

�  … but, applications do want efficient, accurate
transfer of data in order, in a timely fashion
�  IP pushes these to the higher layers

12

IP Service: Is Best-Effort Enough?
�  No error detection or correction

�  Higher-level protocol can provide error checking
�  Successive packets may not follow the same path

�  Usually not a problem as long as packets get there
�  Packets can be delivered out-of-order

�  Number packets so they can be put back in order
�  Packets may be lost or arbitrarily delayed

�  Sender can send the packets again (if desired)
�  No network congestion signal (beyond “drop”)

�  Sender can slow down in response to loss or delay (but
this is a really hard problem..)

13

To Think About..

•  Think about the diametrically opposing
architectural difference:
– Smart Network, dumb endpoints, vs. Stupid

Network, Intelligent Endpoints.
•  Which one provides more flexibility?
•  Which one allows more future innovation?
•  What do you think about the KISS principle?

(Keep It Simple, Stupid)

14

Multiplexing/De-multiplexing

Sockets and Ports

15

Multiplexing/De-multiplexing

•  Communication is really between end-
processes, not just hosts

•  How to identify the sending and receiving
process?

•  IP addresses are not enough – they only
identify interfaces (not hosts! A host may have
multiple interfaces, wired, wireless)

•  Solution: sockets and ports

16

Socket: End Point of Communication

�  Socket is an Application Programming Interface
�  Supports the creation of network applications

�  Used for Inter-Process Communication (IPC)
�  Locally or over the network

�  Process sends and receives through a “socket”
�  In essence, the doorway leading in/out of the house

17

socket socket

User process User process

Operating
System

Operating
System

UNIX Socket API
�  Socket interface

�  Originally provided in Berkeley UNIX
�  Later adopted by all popular operating systems
�  Simplifies porting applications to different OSes

�  In UNIX, everything is like a file
�  All input is like reading a file
�  All output is like writing a file
�  File is represented by an integer file descriptor

�  New system calls for sockets
�  Client: create, connect, write, read, close
�  Server: create, bind, listen, accept, read, write, close
�  (covered at recitation)

18

Delivering the Data: Division of Labor

•  Network
– Deliver data packet to the destination host
– Based on the destination IP address

•  Operating system
– Deliver data to the destination socket
– Based on the protocol and destination port #

•  Application
– Read data from the socket
–  Interpret the data (e.g., render a Web page)

19

Ports: Identifying the Receiving
Process

�  Sending process must specify the receiver
�  Specify the host, and
�  Specify the receiving process

�  Receiving host
�  Identified by its IP address (32 bits)

�  But the receiving process?
�  Problem: host may be running many different processes
�  Solution: port: uniquely identifies the receiver’s socket
�  A port number is a 16-bit quantity

�  Similarly, the sender specifies its own socket
using its own port number

�  Thus, for networked applications a socket must
be bound to a port (See the bind() syscall)

20

Multiplexing/De-multiplexing

21

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2 P3 P4 P1

host 1 host 2 host 3

= process = socket

deliver received segments
to correct socket

De-multiplexing at recv host
gathering data from multiple
sockets, enveloping data with
header (later used for
De-multiplexing)

Multiplexing at send host

How De-multiplexing Works
•  Network layer delivers

IP datagrams
–  each datagram (packet) has

source IP address, destination
IP address

–  each datagram carries one
transport-layer segment

–  each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)

•  host uses IP addresses &
port numbers to direct
segment to appropriate
socket

22

source port # dest port #
32 bits

application
data

(message)

other header fields

Simplified TCP/UDP
segment format

Part 1: Connectionless
De-multiplexing

•  Connectionless socket
identified by two-tuple:

 <dest IP address, dest port>
•  For communication two

such sockets are needed –
one at each end

•  In the Internet, implemented
by the UDP transport
protocol

•  When host receives
segment:
–  checks destination port

number in segment
–  directs segment to socket

with that port number
•  IP datagrams with

different source IP
addresses and/or source
port numbers directed to
same socket

23

Connectionless Demux (cont.)

24

Client
IP:B

P2

client
 IP: A

P1 P1 P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”

Part 2: Connection-oriented
Demux

•  Connection identified by
4-tuple:

<srsIP, src port, dstIP, dst port>
•  Receiving host uses all

four values to direct
segment to appropriate
socket

•  In the Internet,
implemented by the TCP
transport protocol

•  Server host may support
many simultaneous
sockets:
–  each socket identified by

its own 4-tuple
•  Web servers have

different sockets for
each connecting client
–  non-persistent HTTP will

have different socket for
each request

25

Connection-oriented Demux (cont.)

26

Client
IP:B

P1

client
 IP: A

P1 P2 P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

Socket shared by
all processes
Bound to port 80

Example: Threaded Web Server

27

Client
IP:B

P1

client
 IP: A

P1 P2

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4
P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

Process spawns threads

T1 T2 T3

What Port Number To Use?
�  Popular applications have well-known ports

�  E.g., port 80 for Web and port 25 for e-mail
�  Well-known ports listed at http://www.iana.org

�  Well-known vs. ephemeral ports
�  Server has a well-known port (e.g., port 80)

�  Between 0 and 1023 (low or privileged ports, OS assigned)
�  Client picks an unused ephemeral (i.e., temporary) port

�  Between 1024 and 65535
�  Uniquely identifying the traffic between the hosts

�  Two IP addresses and two port numbers
�  Underlying transport protocol (e.g., TCP or UDP)
�  The so-called 5-tuple <saddr, sp, daddr, dp, proto>

28

Typical Client Program

•  Prepare to communicate
– Create a socket
– Determine server address and port number
–  Initiate the connection to the server

•  Exchange data with the server
– Write data to the socket
– Read data from the socket
– Do stuff with the data (e.g., render a Web page)

•  Close the socket
29

Typical Server Program
� Prepare to communicate

�  Create a socket
�  Associate local address and port with the socket

� Wait to hear from a client (passive open)
�  Indicate how many clients-in-waiting to permit
�  Accept an incoming connection from a client

� Exchange data with the client over new socket
�  Receive data from the socket
�  Do stuff to handle the request (e.g., get a file)
�  Send data to the socket
�  Close the socket

� Repeat with the next connection request

30

Servers Differ From Clients
�  Passive open

�  Prepare to accept connections
�  … but don’t actually establish one
�  … until hearing from a client

�  Hearing from multiple clients
�  Allow a backlog of waiting clients
�  ... in case several try to start a connection at once

�  Create a socket for each client
�  Upon accepting a new client
�  … create a new socket for the communication

31

Want to See Real Clients and
Servers?

� Apache Web server
�  Open source server first released in 1995
�  Name derives from “a patchy server” ;-)
�  Software available online at http://www.apache.org

� Mozilla Web browser
�  http://www.mozilla.org/developer/

�  Sendmail
�  http://www.sendmail.org/

� BIND Domain Name System
�  Client resolver and DNS server
�  http://www.isc.org/index.pl?/sw/bind/

� …

32

Link Layer Protocols

33

Topics
�  Link-layer services (ch2 – 2.4: read on your own)

�  Encoding, framing, and error detection
�  Error correction and flow control

�  Sharing a media
�  Channel partitioning
�  Taking turns
�  Random access

�  Ethernet protocol
�  Carrier sense, collision detection, and random access
�  Frame structure
�  Hubs and switches

34

Message, Segment, Packet, and
Frame

35

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

HTTP message

TCP segment

IP packet IP packet IP packet

Ethernet frame Ethernet frame SONET frame

Adaptors Communicating

�  Link layer implemented in adaptor (network interface card)
�  Ethernet card, PCMCIA card, 802.11 card

�  Sending side:
�  Encapsulates datagram in a frame
�  Adds error checking bits, flow control, etc.

�  Receiving side
�  Looks for errors, flow control, etc.
�  Extracts datagram and passes to receiving node

36

sending
node

frame

receiving
node

datagram

frame

adapter adapter

link layer protocol

“Taking Turns” MAC protocols

Polling
� Master node
“invites” slave
nodes to transmit
in turn

�  Concerns:
�  Polling overhead
�  Latency
�  Single point of failure

(master)

37

Token passing
•  token passed from one node to

next sequentially
•  Concerns:

–  Token overhead
–  Latency
–  Single point of failure (token)
–  Token regeneration

Random Access Protocols

�  When node has packet to send
�  Transmit at full channel data rate R.
�  No a priori coordination among nodes

�  Two or more transmit: collision!
�  Random access MAC protocol specifies:

�  How to detect collisions
�  How to recover from collisions

�  Examples
�  ALOHA and Slotted ALOHA
�  CSMA, CSMA/CD, CSMA/CA

38

Key Ideas of Random Access
�  Carrier sense

�  Listen before speaking, and don’t interrupt
�  Checking if someone else is already sending data
�  … and waiting till the other node is done

�  Collision detection
�  If someone else starts talking at the same time, stop
�  Realizing when two nodes are transmitting at once
�  …by detecting that the data on the wire is garbled

�  Randomness
�  Don’t start talking again right away
�  Waiting for a random time before trying again

39

Slotted ALOHA

Assumptions
�  All frames same size
�  Time divided into equal slots

(time to transmit a frame)
�  Nodes start to transmit

frames only at start of slots
�  Nodes are synchronized
�  If two or more nodes

transmit, all nodes detect
collision

Operation
�  When node obtains fresh

frame, transmits in next slot
(no carrier sense)

�  No collision: node can send
new frame in next slot

�  Collision: node retransmits
frame in each subsequent
slot with probability p until
success

40

Slotted ALOHA

Pros
�  Single active node can

continuously transmit at full
rate of channel

�  Highly decentralized: only slots
in nodes need to be in sync

�  Simple

Cons
�  Collisions, wasting slots
�  Idle slots
�  Nodes may be able to detect

collision in less than time to
transmit packet

�  Clock synchronization

41

CSMA (Carrier Sense Multiple Access)

•  Collisions hurt the efficiency of ALOHA
protocol
– At best, channel is useful 37% of the time

•  CSMA: listen before transmit
–  If channel sensed idle: transmit entire frame
–  If channel sensed busy, defer transmission

•  Human analogy: don’t interrupt others!

42

CSMA Collisions

43

Collisions can still occur:
propagation delay means
two nodes may not hear
each other’s transmission

Collision:
entire packet transmission
time wasted

CSMA/CD (Collision Detection)
�  CSMA/CD: carrier sensing, deferral as in CSMA

�  Collisions detected within short time
�  Colliding transmissions aborted, reducing wastage

�  Collision detection
�  Easy in wired LANs: measure signal strengths, compare

transmitted, received signals
�  Difficult in wireless LANs: receiver shut off while

transmitting
�  Human analogy: the polite conversationalist

44

CSMA/CD Collision Detection

45

Ethernet
� Dominant wired LAN technology:
� First widely used LAN technology
� Simpler, cheaper than token LANs and ATM
� Kept up with speed race: 10 Mbps – 10 Gbps or more

46

Metcalfe’
s

Ethernet
sketch

Ethernet Uses CSMA/CD
�  Carrier sense: wait for link to be idle

�  Channel idle: start transmitting
�  Channel busy: wait until idle

�  Collision detection: listen while transmitting
�  No collision: transmission is complete
�  Collision: abort transmission, send jam signal

�  Random access: exponential back-off
�  After collision, wait a random time before trying again
�  After mth collision, pick K randomly from {0, …, 2m-1}
�  … and wait for K*512 bit times before trying again

47

Limitations on Ethernet Length

�  Latency depends on physical length of link
�  Time to propagate a packet from one end to the other

�  Suppose A sends a packet at time t
�  And B sees an idle line at a time just before t+d
�  … so B happily starts transmitting a packet

�  B detects a collision, and sends jamming signal
�  But A doesn’t see collision till t+2d

48

latency d!
A! B!

Limitations on Ethernet Length

�  A needs to wait for time 2d to detect collision
�  So, A keeps transmitting during this period
�  … and keep an eye out for a possible collision

�  Imposes restrictions on Ethernet
�  Maximum length of the wire: 2500 meters
�  Minimum length of the packet: 512 bits (64 bytes)

�  Limitations less relevant with switched networks?
�  Still have to do broadcast..

49

latency d!
A! B!

Ethernet Frame Structure
•  Sending adapter encapsulates packet in frame

•  Preamble: synchronization
–  Seven bytes with pattern 10101010, followed by one byte

with pattern 10101011
–  Used to synchronize receiver, sender clock rates

50

Ethernet Frame Structure (Cont.)
•  Addresses: source and destination MAC

addresses
–  Adaptor passes frame to network-level protocol

•  If destination address matches the adaptor
•  Or the destination address is the broadcast address

–  Otherwise, adapter discards frame

•  Type: indicates the higher layer protocol
–  Usually IP
–  But also Novell IPX, AppleTalk, …

•  CRC: cyclic redundancy check
–  Checked at receiver
–  If error is detected, the frame is simply dropped

51

Hubs: Physical-Layer Repeaters
•  Hubs are physical-layer repeaters

– Bits coming from one link go out all other links
– At the same rate, with no frame buffering
– No CSMA/CD at hub: adapters detect

collisions

52

twisted pair

hub

Interconnecting with Hubs
•  Backbone hub interconnects LAN segments
•  All packets seen everywhere, forming one

large collision domain
•  Can’t interconnect Ethernets of different

speeds

53

hub hub hub

hub

Switch
•  Link layer device

– Stores and forwards Ethernet frames
– Examines frame header and selectively

forwards frame based on MAC dest address
– When frame is to be forwarded on segment,

uses CSMA/CD to access segment
•  Transparent

– Hosts are unaware of presence of switches
•  Plug-and-play, self-learning

– Switches do not need to be configured

54

Switch: Traffic Isolation
•  Switch breaks subnet into LAN segments
•  Switch filters packets

–  Same-LAN-segment frames not usually forwarded onto
other LAN segments

–  Segments become separate collision domains

55

hub hub hub

switch

collision domain collision domain

collision
domain

Benefits of Ethernet

•  Easy to administer and maintain
•  Inexpensive
•  Increasingly higher speed
•  Moved from shared media to switches

– Change everything except the frame format
– A good general lesson for evolving the Internet

56

Conclusions
•  IP runs on a variety of link layer technologies

– Point-to-point links vs. shared media
– Wide varieties within each class

• Link layer performs key services
– Encoding, framing, and error detection
– Optionally error correction and flow control

• Shared media introduce interesting challenges
– Decentralized control over resource sharing
– Partitioned channel, taking turns, and random access
– Ethernet as a wildly popular example

57

