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Topics 

•  Circuit vs. Packet Switching 
•  Best Effort Internet Model 
•  Multiplexing/de-multiplexing 

– Socket and ports 
•  (chapters 1 and 2.5 onwards) 
•  Link Layer Protocols 
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Circuit Switching 
(e.g., Phone Network) 

� Step 1: Source establishes connection to destination 
� Connection setup signaling from src to dst 
� Routers en route store path connection info (state) 

� Step 2: Source sends data over the connection 
� (Sometimes packets are called cells - cells are fixed size) 
� No dst address in packets, since routers know path 

� Step 3: When done, source tears down connection 
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Virtual Circuits (VC) 
•  Need call setup/teardown for each call before data can 

flow 
•  Each packet carries VC identifier (not destination host 

address) 
•  Every router on src-dst path maintains “state” for each 

passing connection 
•  Link, router resources (bandwidth, buffers) may be 

allocated to VC 
•  Example network: ATM (Asynchronous Transfer 

Mode) 
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VC Implementation 

A VC consists of: 
1.  Path from source to destination 
2.  VC numbers, one number for each link along path 
3.  Entries in forwarding tables in routers along path 

�  Packet belonging to VC carries a VC number in 
the header 

�  VC number may change (and usually does) on 
each link. 
�  VCs are negotiated between neighboring routers 
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Forwarding Tables 
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12 22 32 

1 2 
3 

VC number 

interface 
number 

Incoming interface    Incoming VC #     Outgoing interface    Outgoing VC # 

1                           12                               3                          22 
2                          63                               1                           18  
3                           7                                2                           17 
1                          97                               3                           87 
…                          …                                …                            … 

Forwarding table in R1: 

Routers maintain connection state information! 

R1 R2 

What is the forwarding state in R2 for C1? 

C1: 



Advantages of Circuit Switching 
• Easy to provide performance guarantees 

– Bandwidth can be reserved along the entire path 
– Fixed path means virtually constant latency 

• Simple abstraction 
– Reliable communication channel between hosts 
– No worries about lost or out-of-order packets 

• Simple forwarding  
– Based on time slot, frequency or label 
– No need for complex packet header 
– Low per-packet overhead 
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Disadvantages of Circuit Switching 
� With peak reservations, wasted BW 

�  Idle resources during silent periods 
� Unable to achieve gains from statistical multiplexing 

� Blocked connections 
� Connection refused when resources are not sufficient 
� Unable to offer “okay” service to everybody 

� Connection set-up delay  
� No communication until a connection is set up (1 RTT) 
� Unable to avoid extra latency for small data transfers 

� Network state 
� Network nodes must store per-connection state 
� Unable to avoid per-connection storage and state 
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Packet Switching (e.g., Internet) 
•  Messages divided into globally addressable 

packets (aka datagrams) 
– Each packet’s header contains a destination address 

•  Packets may travel separately through network 
– Packet forwarding based on the header 
– Network nodes may store packets temporarily 

•  Destination reconstructs the message 
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IP Service Model: Why Packet 
Switching? 

� In one word: Flexibility! 
� Data traffic is bursty 

� Remote login, email, video, voice, etc. 
� Packets don’t waste reserved bandwidth 

� No traffic exchanged during idle periods 
� Packets better for multiplexing 

� Different transfers share access to same links 
� Packets can be delivered by almost anything 

� Best effort service 
� RFC 2549: IP over Avian Carriers (aka birds)  

� … still, packet switching can be inefficient 
� Extra header bits 
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Network Architecture: Internet vs. 
POTS* 

�  There is a fundamental architectural difference 
between Internet and telephone network 

�  POTS: Intelligent network, dumb terminals 
�  Reliable, in-sequence, guaranteed delivery (bandwidth and 

delay) 
�  Internet: Dumb network, intelligent endpoints 

�  Best effort delivery (unreliable, packets may arrive out of 
sequence and duplicated, no bandwidth or delay 
guarantees) 

(*POTS: Plain Old Telephone System) 
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IP Service Model: Why Best-Effort? 

�  Flexibility: Network does not dictate applications 
�  IP means never having to say you’re sorry… 

�  Don’t need to reserve bandwidth and memory 
�  Don’t need to do error detection & correction 
�  Don’t need to remember from one packet to next 
�  Can’t get any simpler than that! 

�  Easier to survive failures 
�  Transient disruptions are okay during failover 

�  … but, applications do want efficient, accurate 
transfer of data in order, in a timely fashion 
�  IP pushes these to the higher layers 
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IP Service: Is Best-Effort Enough? 
�  No error detection or correction 

�  Higher-level protocol can provide error checking 
�  Successive packets may not follow the same path 

�  Usually not a problem as long as packets get there 
�  Packets can be delivered out-of-order 

�  Number packets so they can be put  back in order 
�  Packets may be lost or arbitrarily delayed 

�  Sender can send the packets again (if desired) 
�  No network congestion signal (beyond “drop”) 

�  Sender can slow down in response to loss or delay (but 
this is a really hard problem..) 
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To Think About.. 

•  Think about the diametrically opposing 
architectural difference: 
– Smart Network, dumb endpoints, vs. Stupid 

Network, Intelligent Endpoints. 
•  Which one provides more flexibility? 
•  Which one allows more future innovation? 
•  What do you think about the KISS principle? 

(Keep It Simple, Stupid) 
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Multiplexing/De-multiplexing 

Sockets and Ports 
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Multiplexing/De-multiplexing 

•  Communication is really between end-
processes, not just hosts 

•  How to identify the sending and receiving 
process? 

•  IP addresses are not enough – they only 
identify interfaces (not hosts! A host may have 
multiple interfaces, wired, wireless) 

•  Solution: sockets and ports 
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Socket: End Point of Communication 

�  Socket is an Application Programming Interface 
�  Supports the creation of network applications  

�  Used for Inter-Process Communication (IPC) 
�  Locally or over the network 

�  Process sends and receives through a “socket” 
�  In essence, the doorway leading in/out of the house 
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UNIX Socket API 
�  Socket interface 

�  Originally provided in Berkeley UNIX 
�  Later adopted by all popular operating systems 
�  Simplifies porting applications to different OSes 

�  In UNIX, everything is like a file 
�  All input is like reading a file 
�  All output is like writing a file 
�  File is represented by an integer file descriptor 

�  New system calls for sockets 
�  Client: create, connect, write, read, close 
�  Server: create, bind, listen, accept, read, write, close 
�  (covered at recitation) 
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Delivering the Data: Division of Labor 

•  Network 
– Deliver data packet to the destination host 
– Based on the destination IP address 

•  Operating system 
– Deliver data to the destination socket 
– Based on the protocol and destination port # 

•  Application 
– Read data from the socket 
–  Interpret the data (e.g., render a Web page) 
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Ports: Identifying the Receiving 
Process 

�  Sending process must specify the receiver 
�  Specify the host, and 
�  Specify the receiving process 

�  Receiving host 
�  Identified by its IP address (32 bits) 

�  But the receiving process? 
�  Problem: host may be running many different processes 
�  Solution: port: uniquely identifies the receiver’s socket 
�  A port number is a 16-bit quantity 

�  Similarly, the sender specifies its own socket 
using its own port number 

�  Thus, for networked applications a socket must 
be bound to a port (See the bind() syscall) 
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Multiplexing/De-multiplexing 
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application 

transport 

network 

link 

physical 

P1 application 

transport 

network 

link 

physical 

application 

transport 

network 

link 

physical 

P2 P3 P4 P1 

host 1 host 2 host 3 

= process = socket 

deliver received segments 
to correct socket 

De-multiplexing at recv host 
gathering data from multiple 
sockets, enveloping data with  
header (later used for  
De-multiplexing) 

Multiplexing at send host 



How De-multiplexing Works 
•  Network layer delivers 

IP datagrams 
–  each datagram (packet) has 

source IP address, destination 
IP address 

–  each datagram carries one 
transport-layer segment 

–  each segment has source, 
destination port number  
(recall: well-known port 
numbers for specific 
applications) 

•  host uses IP addresses & 
port numbers to direct 
segment to appropriate 
socket 
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source port # dest port # 
32 bits 

application 
data  

(message) 

other header fields 

Simplified TCP/UDP 
segment format 



Part 1: Connectionless 
De-multiplexing 

•  Connectionless socket 
identified by  two-tuple: 

   <dest IP address, dest port> 
•  For communication two 

such sockets are needed – 
one at each end 

•  In the Internet, implemented 
by the UDP transport 
protocol 

•  When host receives 
segment: 
–  checks destination port 

number in segment 
–  directs segment to socket 

with that port number 
•  IP datagrams with 

different source IP 
addresses and/or source 
port numbers directed to 
same socket 
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Connectionless Demux (cont.) 
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Client 
IP:B 

P2 

client 
 IP: A 

P1 P1 P3 

server 
IP: C 

SP: 6428 
DP: 9157 

SP: 9157 
DP: 6428 

SP: 6428 
DP: 5775 

SP: 5775 
DP: 6428 

SP provides “return address” 



Part 2: Connection-oriented 
Demux 

•  Connection identified by 
4-tuple:  

<srsIP, src port, dstIP, dst port> 
•  Receiving  host uses all 

four values to direct 
segment to appropriate 
socket 

•  In the Internet, 
implemented by the TCP 
transport protocol 

•  Server host may support 
many simultaneous 
sockets: 
–  each socket identified by 

its own 4-tuple 
•  Web servers have 

different sockets for 
each connecting client 
–  non-persistent HTTP will 

have different socket for 
each request 
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Connection-oriented Demux (cont.) 

26 

Client 
IP:B 

P1 

client 
 IP: A 

P1 P2 P4 

server 
IP: C 

SP: 9157 
DP: 80 

SP: 9157 
DP: 80 

P5 P6 P3 

D-IP:C 
S-IP: A 
D-IP:C 

S-IP: B 

SP: 5775 
DP: 80 

D-IP:C 
S-IP: B 

Socket shared by 
all processes 
Bound to port 80 



Example: Threaded Web Server 
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Client 
IP:B 

P1 

client 
 IP: A 

P1 P2 

server 
IP: C 

SP: 9157 
DP: 80 

SP: 9157 
DP: 80 

P4 
P3 

D-IP:C 
S-IP: A 
D-IP:C 

S-IP: B 

SP: 5775 
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D-IP:C 
S-IP: B 

Process spawns threads 

T1 T2 T3 



What Port Number To Use? 
�  Popular applications have well-known ports 

�  E.g., port 80 for Web and port 25 for e-mail 
�  Well-known ports listed at http://www.iana.org 

�  Well-known vs. ephemeral ports 
�  Server has a well-known port (e.g., port 80) 

�  Between 0 and 1023 (low or privileged ports, OS assigned) 
�  Client picks an unused ephemeral (i.e., temporary) port 

�  Between 1024 and 65535 
�  Uniquely identifying the traffic between the hosts 

�  Two IP addresses and two port numbers 
�  Underlying transport protocol (e.g., TCP or UDP) 
�  The so-called 5-tuple <saddr, sp, daddr, dp, proto> 
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Typical Client Program 

•  Prepare to communicate 
– Create a socket 
– Determine server address and port number 
–  Initiate the connection to the server 

•  Exchange data with the server 
– Write data to the socket 
– Read data from the socket 
– Do stuff with the data (e.g., render a Web page) 

•  Close the socket 
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Typical Server Program 
� Prepare to communicate 

�  Create a socket 
�  Associate local address and port with the socket 

� Wait to hear from a client (passive open) 
�  Indicate how many clients-in-waiting to permit 
�  Accept an incoming connection from a client 

� Exchange data with the client over new socket 
�  Receive data from the socket 
�  Do stuff to handle the request (e.g., get a file) 
�  Send data to the socket 
�  Close the socket 

� Repeat with the next connection request 
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Servers Differ From Clients 
�  Passive open 

�  Prepare to accept connections 
�  … but don’t actually establish one 
�  … until hearing from a client 

�  Hearing from multiple clients 
�  Allow a backlog of waiting clients 
�  ... in case several try to start a connection at once 

�  Create a socket for each client 
�  Upon accepting a new client 
�  … create a new socket for the communication 
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Want to See Real Clients and 
Servers? 

� Apache Web server  
�  Open source server first released in 1995 
�  Name derives from “a patchy server” ;-) 
�  Software available online at http://www.apache.org 

� Mozilla Web browser 
�  http://www.mozilla.org/developer/ 

�  Sendmail 
�  http://www.sendmail.org/ 

� BIND Domain Name System 
�  Client resolver and DNS server 
�  http://www.isc.org/index.pl?/sw/bind/ 

� … 
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Link Layer Protocols 
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Topics 
�  Link-layer services (ch2 – 2.4: read on your own) 

�  Encoding, framing, and error detection 
�  Error correction and flow control 

�  Sharing a media 
�  Channel partitioning 
�  Taking turns 
�  Random access 

�  Ethernet protocol 
�  Carrier sense, collision detection, and random access 
�  Frame structure 
�  Hubs and switches 
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Message, Segment, Packet, and 
Frame 
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Adaptors Communicating 

�  Link layer implemented in adaptor (network interface card) 
�  Ethernet card, PCMCIA card, 802.11 card 

�  Sending side: 
�  Encapsulates datagram in a frame 
�  Adds error checking bits, flow control, etc. 

�  Receiving side 
�  Looks for errors, flow control, etc. 
�  Extracts datagram and passes to receiving node 
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“Taking Turns” MAC protocols 

Polling  
� Master node 
“invites” slave 
nodes to transmit 
in turn 

�  Concerns: 
�  Polling overhead  
�  Latency 
�  Single point of failure 

(master) 
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Token passing 
•  token passed from one node to 

next sequentially 
•  Concerns: 

–  Token overhead  
–  Latency 
–  Single point of failure (token) 
–  Token regeneration 

  



Random Access Protocols 

�  When node has packet to send 
�  Transmit at full channel data rate R. 
�  No a priori coordination among nodes 

�  Two or more transmit: collision! 
�  Random access MAC protocol specifies:  

�  How to detect collisions 
�  How to recover from collisions  

�  Examples  
�  ALOHA and Slotted ALOHA 
�  CSMA, CSMA/CD, CSMA/CA 
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Key Ideas of Random Access 
�  Carrier sense 

�  Listen before speaking, and don’t interrupt 
�  Checking if someone else is already sending data 
�  … and waiting till the other node is done 

�  Collision detection 
�  If someone else starts talking at the same time, stop 
�  Realizing when two nodes are transmitting at once 
�  …by detecting that the data on the wire is garbled 

�  Randomness 
�  Don’t start talking again right away 
�  Waiting for a random time before trying again 
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Slotted ALOHA 

Assumptions 
�  All frames same size 
�  Time divided into equal slots 

(time to transmit a frame) 
�  Nodes start to transmit 

frames only at start of slots 
�  Nodes are synchronized 
�  If two or more nodes 

transmit, all nodes detect 
collision 

Operation 
�  When node obtains fresh 

frame, transmits in next slot 
(no carrier sense) 

�  No collision: node can send 
new frame in next slot 

�  Collision: node retransmits 
frame in each subsequent 
slot with probability p until 
success 

40 



Slotted ALOHA 

Pros 
�  Single active node can 

continuously transmit at full 
rate of channel 

�  Highly decentralized: only slots 
in nodes need to be in sync 

�  Simple 

Cons 
�  Collisions, wasting slots 
�  Idle slots 
�  Nodes may be able to detect 

collision in less than time to 
transmit packet 

�  Clock synchronization 
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CSMA (Carrier Sense Multiple Access) 

•  Collisions hurt the efficiency of ALOHA 
protocol 
– At best, channel is useful 37% of the time 

•  CSMA: listen before transmit 
–  If channel sensed idle: transmit entire frame 
–  If channel sensed busy, defer transmission  

•  Human analogy: don’t interrupt others! 
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CSMA Collisions 
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Collisions can still occur: 
propagation delay means  
two nodes may not hear 
each other’s transmission 

Collision: 
entire packet transmission  
time wasted 



CSMA/CD (Collision Detection) 
�  CSMA/CD: carrier sensing, deferral as in CSMA 

�  Collisions detected within short time 
�  Colliding transmissions aborted, reducing wastage  

�  Collision detection  
�  Easy in wired LANs: measure signal strengths, compare 

transmitted, received signals 
�  Difficult in wireless LANs: receiver shut off while 

transmitting 
�  Human analogy: the polite conversationalist  
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CSMA/CD Collision Detection 
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Ethernet 
� Dominant wired LAN technology:  
� First widely used LAN technology 
� Simpler, cheaper than token LANs and ATM 
� Kept up with speed race: 10 Mbps – 10 Gbps or more  
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Ethernet Uses CSMA/CD 
�  Carrier sense: wait for link to be idle 

�  Channel idle: start transmitting 
�  Channel busy: wait until idle 

�  Collision detection: listen while transmitting 
�  No collision: transmission is complete 
�  Collision: abort transmission, send jam signal 

�  Random access: exponential back-off 
�  After collision, wait a random time before trying again 
�  After mth collision, pick K randomly from {0, …, 2m-1} 
�  … and wait for K*512 bit times before trying again 
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Limitations on Ethernet Length 

�  Latency depends on physical length of link 
�  Time to propagate a packet from one end to the other 

�   Suppose A sends a packet at time t 
�  And B sees an idle line at a time just before t+d 
�  … so B happily starts transmitting a packet 

�  B detects a collision, and sends jamming signal 
�  But A doesn’t see collision till t+2d 
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Limitations on Ethernet Length 

�  A needs to wait for time 2d to detect collision 
�  So, A keeps transmitting during this period 
�  … and keep an eye out for a possible collision 

�  Imposes restrictions on Ethernet 
�  Maximum length of the wire: 2500 meters 
�  Minimum length of the packet: 512 bits (64 bytes) 

�  Limitations less relevant with switched networks? 
�  Still have to do broadcast.. 
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Ethernet Frame Structure 
•  Sending adapter encapsulates packet in frame 

•  Preamble: synchronization 
–  Seven bytes with pattern 10101010, followed by one byte 

with pattern 10101011 
–  Used to synchronize receiver, sender clock rates 
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Ethernet Frame Structure (Cont.) 
•  Addresses: source and destination MAC 

addresses  
–  Adaptor passes frame to network-level protocol 

•  If destination address matches the adaptor 
•  Or the destination address is the broadcast address 

–  Otherwise, adapter discards frame 

•  Type: indicates the higher layer protocol  
–  Usually IP 
–  But also Novell IPX, AppleTalk, … 

•  CRC: cyclic redundancy check 
–  Checked at receiver 
–  If error is detected, the frame is simply dropped 
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Hubs: Physical-Layer Repeaters 
•  Hubs are physical-layer repeaters 

– Bits coming from one link go out all other links 
– At the same rate, with no frame buffering 
– No CSMA/CD at hub: adapters detect 

collisions 
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Interconnecting with Hubs 
•  Backbone hub interconnects LAN segments 
•  All packets seen everywhere, forming one 

large collision domain 
•  Can’t interconnect Ethernets of different 

speeds 
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Switch 
•  Link layer device 

– Stores and forwards Ethernet frames 
– Examines frame header and selectively 

forwards frame based on MAC dest address 
– When frame is to be forwarded on segment, 

uses CSMA/CD to access segment 
•  Transparent 

– Hosts are unaware of presence of switches 
•  Plug-and-play, self-learning 

– Switches do not need to be configured 
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Switch: Traffic Isolation 
•  Switch breaks subnet into LAN segments 
•  Switch filters packets 

–  Same-LAN-segment frames not usually forwarded onto 
other LAN segments 

–  Segments become separate collision  domains 
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Benefits of Ethernet 

•  Easy to administer and maintain 
•  Inexpensive 
•  Increasingly higher speed 
•  Moved from shared media to switches 

– Change everything except the frame format 
– A good general lesson for evolving the Internet  
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Conclusions 
•  IP runs on a variety of link layer technologies 

– Point-to-point links vs. shared media 
– Wide varieties within each class 

• Link layer performs key services 
– Encoding, framing, and error detection 
– Optionally error correction and flow control 

• Shared media introduce interesting challenges 
– Decentralized control over resource sharing 
– Partitioned channel, taking turns, and random access 
– Ethernet as a wildly popular example 
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