Modeling and Analyzing
Concurrent Systems



Overview

Why model and analyze concurrent systems?
How are concurrent systems modeled?
How are concurrent systems analyzed?

What tools are available for modeling and
analyzing concurrent systems?
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Overview

* Why model and analyze concurrent systems?



Why model concurrent systems?

e Distributed, concurrent systems are becoming
commonplace, but they are notoriously difficult to

develop

— network applications, data communication protocols, multithreaded code,
client-server applications

* Concurrency-specific errors: deadlock, livelock

— A deadlock occurs when the system has reached a state in
which no work is done but at least one process in the system
needs to complete its tasks

— A livelock occurs when the processes in a system are stuck in
a repetitive task and make no progress towards their
functional goals.
 These types of behavioral errors can be mechanically
detected if the systems are properly modeled and

analyzed



Common flaws in concurrent system
modeling

Underspecification: Model is incomplete, imprecise or allows behavior
that should not be allowed (i.e., model is too permissive).

Overspecification: Model disallows behavior that should be allowed, that
is, model is to restrictive

Violations of safety properties: A safety property is a property that must
not be violated

— “nothing bad happens”; a bad behavior should never occur

— Aninvariant is an example of a safety property

— Example 1: Mutual exclusion property — at most one process is in its critical section
at any given time

— Example 2: Absence of deadlocks

Violations of liveness properties: Set of properties that a system must
satisfy, i.e., properties that require desired events to eventually occur
— “something good eventually happens”

— Example 1: Starvation freedom, e.g., each process waiting to enter its critical
section will eventually enter its critical section.

— Example 2: Progress: A process will eventually perform a non-skip step



What is Model Checking?

e “Model checking is an automated technique
that, given a finite-state model of a system
and a logical property, systematically checks
whether this property holds for (a given initial
state in) that model.” [Clarke & Emerson
1981]:

e Model checking tools automatically verify
whether M /=, holds, where M is a (finite-
state) model of a system and property @ is
stated in some formal notation.



Model Checking process

. Construct a model of the system (M)

. Formalize the properties of the system that will
be evaluated in the model (P)

. Use a model checker to determine if M satisfies
P. Three results are possible:
1. The model M satisfies the property P, i.e. M |=P

2. M does not satisfy P; in this case a counterexample is
produced

3. No conclusive result is produced by the model
checker (model checker ran out of space or time)



What is meant by “model” in “model
checker”?

e The term “model” as used in “model checker” is an
assignment of values to variables in a logical formula
that makes the formula true. Alternatively, a formula
defines a family of “models” or instances (where an
instance satisfies the formula)

— For example, a model of a proposition is an assignment of
truth values to the proposition variables that makes the
proposition true (e.g., a line in a truth table is a model)

e A model checker checks whether a system model is an
instance of the property

— That is, it checks if the system model is an assignment of

values to variables in the property that makes the property
true.



Model of a formula: An example

e Somey: Year, All s:Student| advisedByRF(s)
and completedThesis(s,y) implies
academicPosition(s)

e Model
— Student = {DT, DS, RR, ES, EG}

— advisedByRf = {DS, ES, RR, EG}

— completeThesis = {(DT,98), (DS, 08), (RR,08),
(ES,08), (EG,03)}

— academicPositions = {EG, DS, RR, ES}



Is the Alloy Analyzer a Model Checker?

e No! Itis a Model Finder

* The Analyzer generates an instance that
satisfies the constraints in signatures,
facts and the condition in the predicates
or assertions.



Use of the term “model” in this course

 We use the term “model” in this course to
refer to an abstraction of a software system

e We'll continue to use the term in this sense

* When model-checking a software model
against a formally expressed property we're
checking that the software model is a
mathematical model of the property.



Overview

e How are concurrent systems modeled?



How can we describe a system so that it
can be mechanically model-checked?

* Focus on linear temporal behavioral properties

— Linear model of time; no branching in the timeline
over which behaviors are observed
 Behaviors expressed in terms of Transition
Systems that describe the effect of operations on
the system’s state.

e A linear temporal (LT) property characterizes a
set of state transitions

A model satisfies a linear temporal property if the
state transitions it defines are all included in the
transitions characterized by the LT property.



Transition systems



Using Transition Systems to model
system behavior

e A Transition System (TS) is a directed graph
where nodes represent states and edges
represent transitions between states

e A state describes information about a system at a
particular point in time (cf. state in Alloy)

— E.g., the state of a traffic light indicates the color of
the light that is illuminated at a point in time

e A transition describes the conditions under which
a system moves from one state to another.



A (toy) example of a simple TS

get_beer

insert_coin

(aﬂdﬂ, = Qeﬂert ) bem P

Transitions are associated with action labels that indicate the actions
that cause the transition.
e insert_coin is a user action

» get_soda, get_beer are actions performed by the machine

e T denotes an activity that is not of interest to the modeler (e.g.,
it represents an internal activity of the vending machine)
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Transition System (TS): Formal Definition

A transition system TS is a tuple (S, Act,—, |,AP, L) where

— Sis.aset of states,
— Actis a set of actions,

— ->€S X Act X Sis a transition relation (the first element in the triplet is the
the second element is an action and the third element is the target state of t!

— | &Sis aset of initial states,
— APis a set of atomic propositions, and
— LS ->2%" isalabeling function (24”7 is the power set of AP)

TS is called finite if S, Act, and AP are finite.

)

(s, act, s’) in -> is written as s -*<t-> ¢’

source state,
1e transition)

L(s) are the atomic propositions in AP that are satisfied in state s.
Given a formula, f, a state s satisfies f (i.e., is a model of f) if and only if

can be derived from the atomic propositions associated with state s

via th
s |=fiff L(s) |=f
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Toy example again

—{ pay

get_soda — get_beer
insert_coin

—_—

(.‘?ﬂ{fﬂ)‘ = i};@ - '-'.h_hem' )

S = {pay, select, soda, beer}

| = {pay}
Act = {insert_coin, get_soda, get_beer, T}

p—

-> ={(pay, insert_coin, select), (beer, get_beer,
pay), (soda, get_soda, pay), (select, T, soda),
(select, T, beer)}
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Atomic propositions in the toy Example

. . . . _._f
The atomic propositionsina MVW

get_beer

transition system are chosen
based on the properties the
modeler wants to check.

insert_coin

1

(;EL} T E’E@ s \_beer )

Example property to verify: The vending machine only delivers
a drink after the user pays (inserts a coin).

Relevant atomic propositions: AP = {paid, delivered}

Appropriate Labeling function:

L(pay) = empty set
L(soda)=L(beer)={paid, delivered}
L(select)={paid}
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Using non-determinism to under-
specify a problem

 The toy model is non-deterministic: When the system
enters the “select” state, the transition system non-
deterministically chooses to dispense beer or soda (i.e., it
makes a choice that cannot be determined beforehand by
examining the model).

* |n this case the model deliberately abstracts over the

mechanism a vending machine customer uses to select
soda or beer

— In other words, the modeler is leaving open the choice of how
this is done; someone implementing the model needs to resolve
this non-determinism to make the system deterministic

* Non-deterministic choice is also used to model concurrent
(parallel) behavior as we will see later.



Action-Deterministic TS

e TS=(S, Act, ->, |, AP, L) is action-deterministic
if

— There is at most one initial state

e #(I) <=1 (# returns the number of elements in its set
argument)
— For all states s in S and actions act in Act, there is
at most one transition labeled with the action act

that leaves the state s, i.e.
e #(Post(s,act)) <=1, where Post(s,act) are all the target

states associated with s via transitions labeled with act;
i.e., Post(s,act) = {s’: State | s —2t-> s’}



AP-Deterministic TS

e TS=(S, Act, ->, |, AP, L) is AP-deterministic if
— There is at most one initial state
o #(I) <=1
— For all states s in S and proposition A in 24" there

is at most one next state s’ in which A holds

e For all statessin S, and A in 24P, #(Post(s) intersect
{s’:State | L(s’) = A}) <=1, where Post(s) consists of all
the target states associated with s via transitions; i.e.,
Post(s) = U, i, act POSE(S,act)



Observable behavior

e Often useful to have behavior that is observable
by external agents be deterministic

 Two observable views
— Action-based view: only the actions are observable
— State-based view: only the states, via the propositions
associated with them, are observable
The two notions of deterministic behavior
discussed in the previous slides support these
Views.



Executionsofa TS

TS Executions formalize the notion of behavior in a modeled
system

A finite execution fragment of a TS is a sequence of state
transitions.

— For example, s0-act1->s1, sl-act2->s3, is written as an alternating
sequence of states and actions that ends in a state, sO,actl1,s1,act2,s3
An infinite execution fragment is an infinite sequence of
transitions

A maximal execution fragment is either a finite execution
fragment that ends in a final state, or an infinite execution
fragment.

— An execution fragment is called initial if it starts in an initial state.

An execution of a transition system is an initial maximal
execution fragment



Executions of the vending machine

01 pay 20, select -Ts soda —9%% pay —22M, select -7 soda —9€L, | .

py = select —Ts soda =3¢ pay —29M, celect —Ts beer _bget,

Coin

0 = pay 2", select T soda —9%s pay 2%, select - soda .

Execution fragments p; and p are initial, but ps 1s not. p is not maximal as it does not
end in a terminal state. Assuming that p; and po are infinite, they are maximal. O

Reachability of states: A state in a transition
system is reachable if there is an initial finite
execution fragment that ends in s.
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Modeling concurrent systems that

manipulate data
e |n software the transition from one state to
another often depends on conditions expressed
in terms of data

— Conditional transitions are higher-level constructs
used to describe actions that are performed only
under certain conditions

e Models with conditional transitions are called
program graphs
— Program graphs are “higher-level” in that they can be

transformed into TSs (Note: TSs do not have
conditional transitions) via a process called unfolding



Extended vending machine example

* Vending machine extended to:

— to maintain information on number of beers and
soda in machine

e nsoda: variable that stores number of soda in vending
machine at a particular time

* nbeer: variable that stores number of beer in vending
machine at a particular time

— return coins entered by user if product is not
available

e ret_coin: represents the return coin action



Program graph of the extended vending machine

frue : com frus : refill

start = = sgelect and start =— = gtart

neoda = 0 sget nbeer = 0 ; bget
select =— = start select =— == gtart

neoda = 0 A nbeer = O ref_roin
select =— = start

Action | Effect

refill nsoda := mazx; nbeer := max
sget nsoda := nsoda — 1

bget nbeer := nbeer — 1

select and start are called locations
nsoda, and nbeer are variables

coin, refill, sget, bget, ret_coin are actions 29



A simple text representation of the
vending machine PG

start:
coin; go to select
refill{nsoda := max; nbeer := max}; go to start
select:
nsoda > 0:: sget{nsoda := nsoda -1}; go to start
nbeer > 0:: bget{nbeer := nbeer-1}; go to start
nsoda = 0 and nbeer = 0:: ret_coin; go to start



Unfolding the vending machine PG

refill

-
| start | :r'eﬁ.i.".i."

COETE

\2®00)

refill
bget

COET
r

s

select
[ 1 el

COETE

select
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Program Graphs

A program graph over a set of typed variables,
Var, consists of nodes representing locations
and edges representing conditional transitions

— In the vending machine example Var = {nsoda,
nbeer}

A program graph also defines effects of

actions on the variables
— An effect is a function that takes an action and an
assignment of values to variables and returns a

new assignment of values to variables (the new
assignment is the effect of the action)

Effect : Act x Eval( Var) — Ewval( Var)



Program Graph (PG): Formal Definition

A program graph PG over set Var of typed variables is a tuple
(Loc, Act, Effect,->, LocO, g0) where

e [ocis a set of locations and Act is a set of actions,

e Effect: Act X Eval(Var) --> Eval(Var) is the effect function,

— Eval(Var) is the set of assignments of values to variables in Var,
e.g.,{ <nbeer:= 10, nsoda:=20>, <nbeer:= 1, nsoda:=20>,
<nbeer:=0, nsoda:=4>, ...} is the set of assignments when Var =
{nbeer, nsoda}

e > Cloc X Cond(Var) X Act X Loc is the conditional
transition relation,

— Cond(Var) is the set of all Boolean conditions (propositions) over
Var

* Loc, € Llocis a set of initial locations,
* g, € Cond(Var) is the initial condition.
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Vending machine program graph

Loc={start, select}

Var={nsoda, nbeer}

Act={Dbget, sget, coin, ret_coin, refill}
Effect(coin, n) = 1

Effect(ret _coin, n) = n

Effect(sget, n) = n [nhsoda’ = nsoda - 1]
Effect(bget, n) = n [nbeer’ = nbeer - 1]

Effect(refill, n) = n [nsoda’=max, nbeer'=max]

In the above nis an assignment of values to variables in Var

nlv’=f(v)] means that the new assignment to variable v is a
function, f, of the previous assignment of v and all other
variable assignments are unchanged
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TS semantics of program graphs

The TS is produced by unfolding the program graph

— You can think of unfolding as a representation of the
execution of a program described by a PG

A state consists of a location (a point in the program)
and an assignment of values to variables: <I,n>

An initial state consists of an initial location and an
assignment that satisfies the condition g, defined in the
PG

— <l,,m>is an initial state if |, is an initial location and n|= g,

The propositions consists of the locations together
with Cond(Var)

— The proposition loc is true in any state of the form <loc,
N>, and false otherwise



Transition System Semantics of a Program Graph

The transition system TS(PG) of program graph
PG = (Loc, Act, Effect, —, Locg, gg)

over set Var of variables is the tuple (5, Act, —,I, AP, L) where

S = Loc x Eval( Var)

o — C 5 x Act x 5 is defined by the following rule

£E5 0 A nEg
(€,m) == (€', Effect(c, 7))

I={{{,n)| < Locy,n = go}
¢ AP = Loc U Cond( Var)

L((£,n)) = {£} U {g € Cond(Var) | n |= g}.
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Structured Operational Semantics

 The semantics defined previously is an
example of SOS

e The semantics uses inference rules of the form

premise

i ll'[."l 115101



Using transition systems to
model concurrent behavior



Concurrent systems

e A concurrent (parallel) system consists of
multiple processes executing concurrently (in
parallel).

e |f a concurrent system consists of n processes,
in which each process, proc, is modeled by a
transition system TS, the concurrent system
can be modeled by a transition system
TS=TS, [| TS, || ... || Ts,

— where || is a parallel composition operator



Types of parallel composition operators

Interleaving

— Actions of concurrent processes are interleaved in a non-deterministic
manner

— Used to model processes whose behaviors are completely
independent (asynchronous system of processes)

¢ Communication via shared variables

— A process can influence the behavior of another process by changing
the value of a variable that is shared with the process

Handshaking

— Two processes that want to interact must synchronize their actions
such that they take part in the interaction at the same time

e Channel systems

— In a channel system processes interact by reading from and writing to
channels connecting them



Interleaving



Interleaving of processes

e When processes can execute in a completely
independent manner (with no interactions) one
can view the system of processes as one system
consisting of the actions of each process merged
(interleaved) in an arbitrary manner
— In this system concurrency means that the order in

which the actions are performed does not affect the
final result; i.e., P1.act1,;P2.act2 produces the same

result as P2.act2;P1.act1, where Pi.acti is an action
performed by process Pi (i=1 or i =2)

 The interleaving view is an abstraction in which
only one processor is assumed available to
execute the processes



Interleaving of Traffic Light Transition Systems

1

TrLighty '

Consider a system with two traffic ' )

lights, each modeled by a transition
-.Ir-i".lr.E-_I'.llF.'llg
redd

system
i |

Interleaved System

Interleaving operator: |||
TrLight, ||| TrLights

E red red
- N\

i -
green red red green ]

\ﬁqmcn gmcﬂ]/
\_

b,
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Effect of an interleaving operator

Effect(a ||| B,m) = Effect((a; F)

(3 a),n)

The above states that the order in which the
actions o,  are performed does not matter.

11| Is the interleaving operator
; IS sequential composition

+ represents non-deterministic choice



Effect of an interleaving operator: An

example
Note that
r:=z+1 ||| y:=y—2 variables are not
— "-"q shared across
—F processes
A=

B (z=1,y=5) ; o
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Formal definition of interleaving
operator

Let TS; = (5;,Act;,—;, I;, AP;, L;) i=1,2, be two transition systems. The transition
system TS, ||| T'S; is defined by:
TS1 ||| TS;_: = (S| * Sg,}'!.c'h UAEEE,—},I1 o Ig,APl LJAPE,L}

where the transition relation — 1s defined by the following rules:

3 i}lﬂrl and 8q il‘g Si-_!
(51,82) — {Eiﬁsz} (s1,82) = {515512}
and the labeling function is defined by L(({s1,s2)) = L(s1) U L(s2). O
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Communication via Shared
Variables



Modeling non-asynchronous systems

* |nterleaving operator requires that processes
are completely independent

 What happens if processes access data that is
globally accessible (global data)?

e See example on next slide



Interleaving in the presence of shared
variables

Consider the program graph describing 2 actions from 2
processes, PG1l, PG2, that access a global variable x
(locations are omitted to simplify the presentations)

TS(PG1l)  TS(PG2) TS(PG1)|||TS(PG2)
49



Modeling processes that access global
variables

* An interleaving operator, |||, on program
graphs (rather than transition systems) is used

_PG1 ||| PG2

e TS(PG1 ||| PG2) describes a TS that treats
shared variables appropriately

* |[n general,
— TS(PG1 ||| PG2) # TS(PG1) ||| TS(PG2)



Interleaving of Two Example Program Graphs

PGll

P

. ‘_> [} ; 1

location NS,
conditional \r =2

transition with

assignment action X
L

PGy ||| PGa:
Interleaved K
PG 1o f)

r =21

i
ri=r+1
e -
LE:’] Ffj
ot

PGy : —

TS(PG1 || PGEJ}

|r{] {:.l_ﬁ
T=2J3
Ff“] fo |
r=206
e
|fl 2 |
E=T)

Transition
system for
interleaved
PG
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Interleaving of Program Graphs

Let PG; = (Locs, Act;, Effect;, —, Locuz, gu;), for i=1,2 be two program graphs over the
variables Var;. Program graph PGy ||| PGa over Varg U Varg 1s defined by

PGy ||| PGy = (Locy x Locy, Acty & Acty, Effect, —, Loty 3 x Loea, 901 /A d92)
where = 18 defined by the rules:

Y fy g £
1714 and 177149

l,ly) = (8, 0) (f1,l) & (0,8

and Effect(c,n) = Effect;(a,n) if a € Act;. 0
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Non-determinism

* Non-determinism in a state of a TS produced by a
interleaved PG can be interpreted in 3 ways:

1. As an internal non-deterministic choice made in the
PG

2. As an interleaving of actions that access variables
that are not shared (referred to as non-critical
actions)

3. Asthe resolution of a contention between actions of
PG1 and PG2 that access global variables (referred to
as critical actions)



Accessing global variables

e Critical actions are those that access global
variables

e Access to global variables needs to be
controlled

— Only one critical action can access a global
variable at any time

— How do we ensure this? The mutual exclusion
problem
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Mutual exclusion using semaphores

 Two processes with critical actions use a shared
variable, y, called a semaphore to determine
when they can perform their critical actions, i.e.,
enter their critical sections.

— y =0 indicates that one process is executing its critical
actions (i.e., is in its critical section), and thus the
other cannot execute its critical actions; The process
that is executing its critical section in essence locks
access to the global variables.

— y = 1 indicates that none of the processes are in their

critical sections (access to the global variables is
unlocked)



Critical vs. non-critical sections

F; loop forever

(* noncritical actions *)
request
critical section
release

(* noncritical actions *)
end loop




Program graphs for semaphore-based
mutual exclusion

PG] : PGQ .
R’ %
’Lﬂﬂqerftj J Jhnm‘ern:gj
y = y+l§ ( wzt;tj ) yi=y+ 1 ( w&;tg )
I' L oy =0 L oy >0:
Loyi=y-l o sy y=y-l
[ Crity j [ Crita ﬁl
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PG ||| PGz -
\
e E [{nﬂncrih 3 nr:rﬂr:rj'tg}]"‘ ----- e
T T 1""'-._l_ Y=

5
[

yi=y+l

/' ((waity noneri)) . (noneriey, waity)
Y
)

¥
[

y—.l . s " & T Wi= y—li
[{'31"1'31-.13'3!!'311'32} ]" | (waity, waita) | [{ﬂﬂﬂﬂiﬁlsﬂﬁhu

‘I aF

. . . . " r 3 :
L] W L
. H H - . ' ; i
i i # . ", ! H i
: ‘l Jll - -I.I. [ : .I
5 H "a s r
1]

: i 0 = - :
[ {cﬂ'tl,wair;g}‘_] y: [ E-'!Fi-’afiih{.‘l']rt-g:l ] F

y - I

yi=y+l

Reachable states

(noncrity, nonerity, y = 1) {noncrity, waits, y = 1)
(waity, noncrits, y = 1) (waity, waito, y = 1)
\noncrity, crita, y = 0} \crity, noncrita, y = 0)

(waitq, crito, y = 0} \crity, waite,y = 0)

Sy i=y+1



TS(PG1| | |PG2)

':nlrﬂﬂ'.y:l}

(w1, na, y=1) {ﬂ1,wz,y=1D

Gcijﬂﬂry=DD G“ﬂi,f-‘ﬂ,y=uD

(nmonerity, noncrits, y = 1) {nonerity, waito, y = 1)

(waity, noncrita, y = 1) (waity, waito, y = 1)

(nonerity, crita, y = 0) {crit1, nonerita, y = 0} 59
(waity, crity, y = 0) {crity, waits, y = 0)



Peterson’s mutual exclusion algorithm

* |In the semaphore approach the choice of which
process enters its critical section is made non-
deterministically

— Thatiis, it is up to the implementer of the model to
determine how the next process to enter its critical section
is selected

e Peterson’s algorithm makes an explicit choice

* Uses variables b;, b,, and x

— b;:Boolean - true if P1 is waiting to enter its critical section
or is in its critical section (i.e., b; = wait, or crit,)

— b,:Boolean - true if P2 is waiting to enter its critical section
or is in its critical section

— x:{1,2} - if x =1 then P1 can enter its critical section; else (x
= 2) P2 can enter its critical section



P, loop forever
: (* noneritical actions *)
(b = true; x := 2); (* request *)
wait until (zx =1 v —by)
do critical section od
by := false (* release *)
: (* noncritical actions *)
end loop
PGy : PGs :
R’ R
noncrity nonerity
by ;= true;x := 2 b :=true;z :=1
b := false ba := false
r=1V —by \T=2V =by
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Transition System

As an exercise draw the interleaved program graph

used to produce the transition system shown below.
Notational shortcuts:

N1, n2: noncritl, noncrit2; wl, w2: waitl, wait2; cl1, c2:
criticall, critical2

R R
//__“[{ﬂ1._ng,:r=‘2} (n1,na,2 = 1}]’—\

CREEY) ((n1, ca,z = 1))

K/[{wh 2,7 = 2) [{ﬂlawi:l" = 1?]\/

[:{w],wg,l' — l}] [{w1,wg._sr = E}]

| |

l{:chwﬂrm - 1}] [{EL'l,Eg._-I — 2}
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Atomicity

e The assignment group (b.:=true; x:=i), wherei=1
or 2, are atomigc, i.e., together they are treated as
a single action; the individual assighments cannot
be interleaved with other actions

e This is not essential for Petersen’s algorithm to
work

— Mutual exclusion can also be ensured when the
processes perform these actions in the given order

— Mutual exclusion is NOT guaranteed if the operations
are performed in reverse order, i.e., (x:=i,; b;:=true)



Example of violation of mutual

{nonecrity,
{nonecrity,
(req;,
(waity,
(critq,
{crity,
{crity,

noncrits,

reda.,
reda.,
reda.,
Ireds,
waits,
Crita,

exclusion
r=1, b
r = 1, hl
r = 2, hl
r = 2, hl
r = 2, hl
r = 2, hl
r = 2, hl

= false,
= false,
— false,
= true,
= true,
= true,
= true,

by = false)
by = false)
by = false)
by = false)
by = false)
by = true
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Handshaking



Synchronous interactions

 Processes can also interact through a set of
synchronizing actions, H, called handshake

actions
* Processes interact only if they all can perform the
same handshake action at the same time

— i.e., the models must “shake hands” for the
interaction to take place

 These actions may involve the transfer of data

— This transfer will be ignored in the models we
consider, i.e., we are interested only in the occurrence
of the handshake and not in the data that is

exchanged



Handshaking (Synchronous Message Passing)

Let TS; = (5;, Acty, —;,1;, AP;, L;), i=1, 2 be transition systems and H C Act; M Acts
with 7 ¢ H. The transition system T5; || TS is defined as follows:

TS5, “H TSa = (57 x Sq, Actq U Acta, —, [ x o, AP JAPQLJI

where L((s1,52})) = Li(s1)U La(sa)

Notation: T5; || T'Ss abbreviates TS ||y TS for H = Aecty M Acts.

e interleaving for o ¢ H:

51 -2 8} sy L9 g5
(81,82) =% (s7,82) (s1,80) %> (s1,85)

e handshaking for o € H:
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Handshaking forms

TS ||lg TS2 = TS ||| TSa.

Empty set of handshake actions reduces to interleaving

TS = TS |g TSa ||lg --- |lu TSy

Models broadcasting communication
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Mutual exclusion using an Arbiter
process

e Model the semaphore as a separate process,
called an Arbiter

e Example: TS1 and TS2 are the transition

systems of the parallel processes and Arbiter
is the semaphore process

TSary = (T5; ||| TSs) || Arbiter



-

h|| - noncrt] nonerits
request

request

release release
[ crif; noncrt; noncrity ity ]

request

release release request

crity crity

(T[] T2} || Axbiter :

ﬂﬂﬂﬂl’ltl noncrity lll]]ﬂf:k

release

[ crit] nonerity lock

release
request request
noncrit) etz lock ]
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Railroad crossing example

 Three processes in the system: Train, Gate,
Controller.

* When the Controller receives a signal that a
train is approaching it closes the gate

 The gate is opened only after the train has
sent a signal to the Controller indicating it has
crossed the road.



Train Controller Gate
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Channel Systems



Asynchronous message passing

Processes interact by passing information to each
other via channels of finite or infinite capacity

— A channel is like a buffer
System thus consists of processes and channels

If channel capacity > 0 the processes do not need
to wait for a response from receiver when
sending a message

If channel capacity is 0 then this form of
interaction reduces to handshaking

Each channel can accept messages of a specified
type only



Communication actions

Processes can perform the following communication
actions:

clv  transmit the value v along channel e,
c¢?r receive a message via channel ¢ and assign it to variable .
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Formal definition
A program graph over ( Var, Chan) is a tuple
PG = (Loc, Act, Effect, —, Locy, gg)

=~ C  Loc x (Cond( Var) x (Act U Comm) x Loc.

A channel system CS over ( Var, Chan) consists of program graphs PG; over ( Var;, Chan)
(for 1 £ i < n) with Var = Ulgign Var;. We denote

CS = [PG, |...| PGy] .

The transition relation — of a program graph over (Var, Chan) consists of two types

of conditional transitions. As before, conditional transitions ¢ 5 ¢ are labeled with
puards and actions. These conditional transitions can happen whenever the guard holds.

Alternatively, conditional transitions may be labeled with communication actions. This
el et
yields conditional transitions of type £ “r (for sending v along ¢) and ¢ ST (for

receiving a message along c).
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Enabling communication actions

e Handshaking. If cap(e) = 0, then process F; can transmit a value v over channel ¢
by performing
la
6 =0
only if another process P;, say, “offers” a complementary receive action, i.e., can
perform

clT

F; and P; should thus be able to perform clv (in F;) and ¢?z (in Pj) simultaneously.
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e Asynchronous message passing. If cap(c) > 0, then process P; can perform the
conditional transition
clu
Et' — -E:_
if and only if channel ¢ is not full, i.e., if less than cap(ec) messages are stored in c.
In this case, v is stored at the rear of the buffer e. Channels are thus considered as
first-in, first-out buffers. Accordingly, P; may perform

ol

if and only if the buffer of ¢ is not empty. In this case, the first element v of the
buffer is extracted and assigned to z (in an atomic manner). This is summarized in

Table 2.1.

executable if ... | effect

clv | eis not “full” Enqueue(e,v)

clr | ¢ is not empty (x := Front(c); Dequeue(e));

Table 2.1: Enabledness and effect of communication actions if cap(e) > 0.



Example: Alternating Bit Protocol

System consists of two processes, S (sender), R (receiver) that
communicate over two channels, c, d

Channel c is unreliable (“lossy”) in that it can lose messages during
transmission; channel d is perfect

The goal of the design is to ensure that data units (datums) transmitted by
S are received by R

— S sends data of the form <m,b>, where m is a message and b is a control bit
that cab be eitherOor 1

— Stransmits a message and waits for R to acknowledge receipt; if an
acknowledgement is not received within a given time S retransmits the
message

— If R receives the message then it sends an acknowledgement consisting of the
control bit it received

channel d

" T .
sender [~ /.' receiver
S}TIIE}II'GIIUIIH ——————— .

unreliable channel ¢

timer



PG for Sender

cl{m, 0} d?z

r—1-: timeout? z =10 :

timeout?

z=10
lost |
chk_ack(1) wait(1) - Dﬂf{st_tmr( 1 ,D @ﬂé’_msg( ID
- | “““'“-._.___._.--"""#’
d?x cl{m,1)
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PG for Receiver, Timer

| cl(m,y) |
— 0
( wait( HJ/L—)\(TW} y J.@nd_ack( HD off
1 — tmr_off ¢
d = y=0 d\0 timeout! o)

(sﬂd_ack( IE}‘ T—1 '/pf‘_msgf U/—\(Etﬂ ) ) ( c:::n )

c?{m,y)
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TS Semantics

Let CS = [PG, | ... | PG,) be a channel system over (Chan, Var) with
PG; = (Loc;, Act;, Effect;, —;, Locg i, 90:), for 0 <i < n.
The transition system of CS, denoted T'S(CS), is the tuple (5, Act, —,I, AP, L) where:
¢ S = (Locy x ... x Loe,) x Eval(Var) x Eval(Chan),
® Act = Wy icn Acti & {7},
. —
o I = {{ty,e lumibo) | YO< i< (6 € Locog A mi=gog) |

o AP =+ Loc; W Cond( Var),

O<isn

o L({(l1,....0h,n8) = {b,....¢n} U {g€ Cond(Var) | nE=g}.
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e interleaving for o« € Aect;:

IS A nEg
{Els"':-E‘i'."':-'Elﬂsﬁ'.‘f:’i}'::'fl:-"'sggs"".gn:-nf:-‘f}

where 1" = Effect(cx, 17).

e asynchronous message passing for ¢ € Chan, cap(e) = 0:

— receive a value along channel ¢ and assign it to variable =:

g:cte

£;7— £, A nplEg AN len(é(e)) =k =0 A £le) = v1...v5
{E],...,E{,..-,Eﬂ,ﬁ,f}é{gl-.---:-é};z"':-'Elﬂ'.ﬁ,!‘f’}

where 17’ = [z :=v1] and £ = £[e ;= vo ... vg].

— transmit value v € dom(e¢) over channel ¢:

AN A =g A len(é(e)) = k < cap(e) A £(c) = vi... v

{:El:"' :-Ei?'."' :-'Elﬂsﬂ'.‘f} L}{El'."' :'EI;:-"':ETL'.TF:-‘EF:’
where £’ = £[ec:= vy va. .. v v].
e synchronous message passing over ¢ € Chan, cap(e) = 0O:

11tz

¢; s L AnnplEg AN nlEg A E'J.-QLCIUE'} M ETFE]
{EI].!'"?E?-!"':‘Ej!'"'.Eﬂ:‘n:‘g}L}{Elﬂ'":‘E;!"':‘E}!"".Eﬂ!ﬁk:‘a}

where ' = [z := v].




Coming up

e How can concurrent systems be analyzed?
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