
The Object Constraint Language
(OCL): Specifying constraints in

UML models
Robert B. France

What is OCL?

•  OCL is
–  a textual language to describe constraints
–  the constraint language used in UML models

•  As well as the UML meta-model

•  OCL expressions are always bound to a
UML model
– OCL expressions can be bound to any model

element in UML

3

Diagram with added invariants

{context Flight
inv: type = Airtype::cargo implies airplane.type = Airtype::cargo
inv: type = Airtype::passenger implies

 airplane.type = Airtype::passenger}

1 0..* Flight Airplane

type : Airtype type : Airtype flights

Different kinds of constraints

•  Class invariant
–  a constraint that must always be met by all instances of

the class

•  Precondition of an operation
–  a constraint that must always be true BEFORE the

execution of the operation

•  Postcondition of an operation
–  a constraint that must always be true AFTER the

execution of the operation

Example model

Airport

Flight

Passenger

Airline

*

*
*

*

$minAge: Integer
age: Integer
needsAssistance: Boolean

departTime: Time
/arrivalTime: Time
duration : Interval
maxNrPassengers: Integer

origin

desti-
nation

name: String

name: String

{ordered}

arriving
Flights

departing
Flights

CEO

0..1

flights

passengers

book(f : Flight)

0..1

airline

airline

Constraint context and self

•  Every OCL expression is bound to a
specific context.
– The context is often the element that the

constraint is attached to
•  The context may be denoted within the

expression using the keyword ‘self’.
–  ‘self’ is implicit in all OCL expressions
– Similar to`this’ in C++

Notation
•  Constraints may be denoted within the

UML model or in a separate document.
–  the expression:

context Flight inv: self.duration < 4

–  is identical to:
context Flight inv: duration < 4

–  is identical to:
Flight

duration: Integer <<invariant>>
duration < 4

Elements of an OCL expression

•  In an OCL expression these elements may
be used:
–  basic types: String, Boolean, Integer, Real.
–  classifiers from the UML model and their

features
•  attributes, and class attributes
•  query operations, and class query operations (i.e.,

those operations that do not have side effects)
–  associations from the UML model

Example: OCL basic types

context Airline inv:
name.toLower = ‘klm’

context Passenger inv:
age >= ((9.6 - 3.5)* 3.1).floor implies
mature = true

Model classes and attributes

•  “Normal” attributes
context Flight inv:
self.maxNrPassengers <= 1000

•  Class attributes
context Passenger inv:
age >= Passenger.minAge

Example: Using query operations
context Flight inv:
self.departTime.difference

(self.arrivalTime) .equals(self.duration)

Time

difference(t:Time):Interval
before(t: Time): Boolean
plus(d : Interval) : Time

Interval

equals(i:Interval):Boolean
$Interval(d, h, m : Integer) :

 Interval

$midnight: Time
month : String
day : Integer
year : Integer
hour : Integer
minute : Integer

nrOfDays : Integer
nrOfHours : Integer
nrOfMinutes : Integer

Associations and navigations

•  Every association in the model is a
navigation path.

•  The context of the expression is the
starting point.

•  Role names are used to identify the
navigated association.

Example: navigations

context Flight
inv: origin <> destination
inv: origin.name = ‘Amsterdam’

context Flight
inv: airline.name = ‘KLM’

Airport

Flight

*

*

departTime: Time
/arrivalTime: Time
duration : Interval
maxNrPassengers: Integer

origin

desti-
nation

name: String

arriving
Flights

departing
Flights

Association classes
context Person inv:
if employer.name = ‘Klasse Objecten’ then
 job.type = JobType::trainer

else
 job.type = JobType::programmer
endif

Person Company

Job

* 1
employee employer

type : JobType

name : String

Significance of Collections in
OCL

•  Most navigations return collections rather
than single elements

1 0..* Flight Airplane

type : Airtype type : Airtype flights

Three Subtypes of Collection

•  Set:
–  arrivingFlights(from the context Airport)
–  Non-ordered, unique

•  Bag:
–  arrivingFlights.duration (from the context Airport)
–  Non-ordered, non-unique

•  Sequence:
–  passengers (from the context Flight)
–  Ordered, non-unique

Collection operations

•  OCL has a great number of predefined
operations on the collection types.

•  Syntax:
– collection->operation

Use of the “->” (arrow)
operator instead of the
“.” (dot) operator

The collect operation

•  The collect operation results in the
collection of the values obtained by
evaluating an expression for all elements in
the collection

The collect operation
context Airport inv:
self.arrivingFlights -> collect(airLine) ->notEmpty

airp1

airp2

f1

f2

f3

f4

f5

airline1

airline2

airline3

departing flights arriving flights

The collect operation syntax

•  Syntax:
collection->collect(elem : T | expr)
collection->collect(elem | expr)
collection->collect(expr)

•  Shorthand:
collection.expr

•  Shorthand often trips people up. Be Careful!

The select operation

context Airport inv:
self.departingFlights->select(duration<4)->notEmpty

departing flights

arriving flights

airp1

airp2

airline1

airline2

airline3

f5
duration = 2

f1
duration = 2

f4
duration = 5

f2
duration = 5

f3
duration = 3

The select operation results in the subset of all elements
for which a boolean expression is true

The select operation syntax

•  Syntax:
collection->select(elem : T | expression)
collection->select(elem | expression)
collection->select(expression)

The forAll operation

•  The forAll operation results in true if a
given expression is true for all elements of
the collection

Example: forAll operation
context Airport inv:
self.departingFlights->forAll(departTime.hour>6)

departing flights arriving flights

airp1

airp2

airline1

airline2

airline3

f5
depart = 8

f1
depart = 7

f4
depart = 9

f2
depart = 5

f3
depart = 8

The forAll operation syntax

•  Syntax:
–  collection->forAll(elem : T | expr)
–  collection->forAll(elem | expr)
–  collection->forAll(expr)

The exists operation

•  The exists operation results in true if there is
at least one element in the collection for
which a given expression is true.

Example: exists operation
context Airport inv:
self.departingFlights->exists(departTime.hour<6)

departing flights arriving flights

airp1

airp2

airline1

airline2

airline3

f5
depart = 8

f1
depart = 7

f4
depart = 9

f2
depart = 5

f3
depart = 8

The exists operation syntax

•  Syntax:
collection->exists(elem : T | expr)
collection->exists(elem | expr)
collection->exists(expr)

Other collection operations

•  isEmpty: true if collection has no elements
•  notEmpty: true if collection has at least one

element
•  size: number of elements in collection
•  count(elem): number of occurences of elem in

collection
•  includes(elem): true if elem is in collection
•  excludes(elem): true if elem is not in collection
•  includesAll(coll): true if all elements of coll are in

collection

Local variables
•  The let construct defines variables local to

one constraint:
Let var : Type = <expression1> in

<expression2>

•  Example:
context Airport inv:
Let supportedAirlines : Set (Airline) =

self.arrivingFlights -> collect(airLine) in
(supportedAirlines ->notEmpty) and
(supportedAirlines ->size < 500)

Iterate

•  The iterate operation for collections is the
most generic and complex building block.

collection->iterate(elem : Type;
 answer : Type = <value> |

 <expression-with-elem-and-answer>)

Iterate example
•  Example iterate:

context Airline inv:
flights->select(maxNrPassengers > 150)->notEmpty

•  Is identical to:
context Airline inv:
flights->iterate (f : Flight;

 answer : Set(Flight) = Set{ } |
 if f.maxNrPassengers > 150 then

 answer->including(f)
 else
 answer endif)->notEmpty

An Example: Royal and Loyal
Model

Taken from “The Object Constraint
Language” by Warmer and Kleppe

Defining initial values & derived
attributes

context LoyaltyAccount::points
init:0

context CustomerCard::valid
init: true

context CustomerCard::printedName
Derive: owner.title.concat(‘ ’).concat(owner.name)

context LoyaltyProgram
inv: partners.deliveredServices -> size() >= 1

context LoyaltyProgram
inv: partners.deliveredServices ->
forAll(pointsEarned = 0 and pointsBurned = 0)
implies Membership.account -> isEmpty()

A note on the collect operation
partners -> collect(numberIOfCustomers)
can also be written as
partners.numberOfCustomers

context Customer
inv: programs -> size() = cards -> select (valid = true) -> size()

context ProgramPartner
inv: numberOfCustomers = programs.participants ->
asSet() -> size()

Defining Query Operations in OCL

context
LoyaltyProgram::getServices
(pp:ProgramPartner:Set(Service)
body: if partners -> includes(pp)
then pp.deliveredServices

 else Set{}
 endif

Defining new attributes and operations

context LoyaltyAccount
def: turnover :
Real = transactions.amount -> sum()
//Attributes introduced in this manner are always derived attributes

context LoyaltyProgram
def: getServicesByLevel(levelName:String): Set(Service)
= levels -> select (name = levelName).availableServices ->asSet()

Specifying Operations
context LoyaltyAccount::isEmpty():Boolean
pre: true
post: result = (points = 0)

context Customer::birthdayHappens()
post: age = age@pre +1

context LoyaltyProgram::enroll(c:Customer)
pre: c.name <> ‘ ’
post: participants @pre -> including(c)

context Service::upgradePointsEarned(amount: Integer)
post: calcPoints() = calcPoints@pre() + amount

Inheritance of constraints

•  Guiding principle Liskov’s Substitution
Principle (LSP):
–  “Whenever an instance of a class is expected,

one can always substitute an instance of any of
its subclasses.”

Inheritance of constraints

•  Consequences of LSP for invariants:
–  An invariant is always inherited by each subclass.
–  Subclasses may strengthen the invariant.

•  Consequences of LSP for preconditions and
postconditions:
–  A precondition may be weakened (contravariance)
–  A postcondition may be strengthened (covariance)

OCL Tips

•  OCL invariants allow you to
–  model more precisely
–  remain implementation independent

•  OCL pre- and post-conditions allow you to
–  specify contracts (design by contract)
–  specify interfaces of components more precisely

•  OCL usage tips
–  keep constraints simple
–  always give natural language comments for OCL

exptressions
–  use a tool to check your OCL

