
An Introduction to Workflow
Modeling using Activity Models

Robert B. France
Colorado State University

Software Development Phases
• System Engineering (Business Process Engineering)

– Focus on understanding the context in which software will operate

• Software Requirements Analysis
– Focus on understanding specific parts of system problem targeted

by software

• Design
– Focus on developing a solution that satisfies the requirements
– Two sub-phases: Architectural design; Detailed design

• Implementation
– Focus on developing an executable and deployable form of the

design

© Robert B. France Intro-2

Models in a UML process
System Engineering Models

Domain
ModelActivity

Diagrams

Business
Use Cases

System Workflow Models

System Architectural Models

Software Requirements Models

Analysis
Use Cases

Analysis
Class

Diagram

System
Interaction
Diagrams

Static System
Architecture
Model

realized by

detailed by

realized by

realized by

trace

trace

Intro-3© Robert B. France

realized by

trace

© Robert B. France Intro-4

System Architectural Models

System
Interaction
Diagrams

Static System
Architecture
Modeltrace

Detailed Design Models

Subsystem
Interaction
Diagrams

Static SubSystem
Design Class
diagram

realized by
realized by

trace

Implementation Models

Deployment
Model

realized byrealized by

5

System/Business Process
Engineering

• Software exists within some larger system
– Encompassing system must be understood if software is to work

properly within system
• The process by which a software engineer learns about the domain

to better understand the problem is called domain analysis:
– The domain is the general field of business or technology in which

the clients will use the software
– A domain expert is a person who has a deep knowledge of the

domain
• System engineering is concerned with modeling the system

encompassing software.
– If the system exists within a business organization system

engineering is referred to as business process engineering

© Robert B. France

Modeling systems

• Two types of models
• Domain model: describe system entities and

their static relationships
– Described using class diagrams

• Workflow/process model: describes how
work is accomplished in system
– Described using activity diagrams

© Robert B. France Intro-6

© Clear View Training 2010 v2.6 7

Modeling system workflows
using activity diagrams

• Activity diagrams are used to model a
process as a collection of nodes and edges
between those nodes

• Use activity diagrams to model the
behavior of:
√ workflows/business processes
– use cases
– operations and methods in classes

14.2

© Clear View Training 2010 v2.6 8

Activities

• Activities are networks of nodes connected by edges
• There are three categories of node:

– Action nodes: represent discrete units of work that are atomic within the
activity

– Control nodes: control the flow through the activity
– Object nodes: represent the flow of objects around the activity

• Edges represent flow through the activity
• There are two categories of edge:

– Control flows: represent the flow of control through the activity
– Object flows: represent the flow of objects through the activity

14.4

9

Key Activity Model symbols

Initial node
Decision node
Merge node

Activity final node

Flow final node

Join
Fork

© Robert B. France

10

Simple example

© Robert B. France

© Clear View Training 2010 v2.6 11

Activity diagram syntax

• Activities are networks of nodes
connected by edges

– The control flow is a type of edge
• Activities usually start in an initial node

and terminate in a final node
• Activities can have preconditions and

postconditions
• When an action node finishes, it emits a

token that may traverse an edge to trigger
the next action

– This is sometimes known as a transition
• You can break an edge using connectors:

Address letter

Post letter

Write letter
action node

Send letter

control flow

activity

initial node

final node

precondition: know topic for letter
postcondition: letter sent to address

edge
«localPrecondition»
address is known

«localPostcondition»
letter is addressed

AA
incoming
connector

outgoing
connector

14.4

12

Modeling activities
An activity is a structure of actions

© Robert B. France

13

Connectors

© Robert B. France

14

Another example

[else]

© Robert B. France

© Clear View Training 2010 v2.6 15

Activity diagram semantics
• The token game

– Token – an object, some data or a focus of control
– Imagine tokens flowing around the activity diagram

• Tokens traverse from a source node to a target node via
an edge

– The source node, edge and target node may all have
constraints controlling the movement of tokens

– All constraints must be satisfied before the token can
make the traversal

• A node executes when:
– It has tokens on all of its input edges AND these tokens

satisfy predefined conditions (see later)
• When a node starts to execute it takes tokens off its

input edges
• When a node has finished executing it offers tokens on

its output edges

Address letter

Post letter

Write letter

Send letter

imaginary flow of control token

«localPrecondition»
address is known

«localPostcondition»
letter is addressed

14.5

© Clear View Training 2010 v2.6 16

Action nodes

• Action nodes offer a token on
all of their output edges when:
– There is a token simultaneously on

each input edge
– The input tokens satisfy all

preconditions specified by the
node

• Action nodes:
– Perform a logical AND on their

input edges when they begin to
execute

– Perform an implicit fork on their
output edges when they have
finished executing

Action node

Action node

Action node

input token

output token

action node does
not execute

action node does
not execute

action node
executes

14.7

© Clear View Training 2010 v2.6 17

Types of action node

end of month occurred

time
expression

event type

OrderEvent

wait 30 mins

Accept event action - waits for events detected by its owning object and offers the
event on its output edge.
Is enabled when it gets a token on its input edge.
If there is no input edge it starts when its containing activity starts and is always
enabled.

Accept time event action - waits for a set amount of time.
Generates time events according to it's time expression.

action node syntax action node semantics

Close Order

Call action - invokes an activity, a behavior or an operation.
The most common type of action node.

See next slide for details.

signal type

OrderEvent

Send signal action - sends a signal asynchronously.
The sender does not wait for confirmation of signal receipt.

It may accept input parameters to create the signal

14.7

© Clear View Training 2010 v2.6 18

Call action node syntax
Raise Order

call an activity
(note the rake icon)

Close Order call a behavior

call an
operation

getBalance():double
(Account::)

operation name
class name
(optional)

Get Balance
(Account::getBalance():double)

node name
operation name
(optional)

if self.balance <= 0:
self.status = INCREDIT

else
self.status = OVERDRAWN

programming
language
(e.g. Python)

• The most common type of
node

• Call action nodes may
invoke:

– an activity
– a behavior
– an operation

• They may contain code
fragments in a specific
programming language

– The keyword 'self' refers
to the context of the
activity that owns the
action

14.7.1

© Clear View Training 2010 v2.6 19

Control nodes

Activity final node – terminates an activity

Flow final node – terminates a specific flow within an activity. The other
flows are unaffected

Initial node – indicates where the flow starts when an activity is invoked

Merge node – selects one of its input edges

Fork node – splits the flow into multiple concurrent flows

Join node – synchronizes multiple concurrent flows
May optionally have a join specification to modify its semantics

Final nodes

«decisionInput»
decision condition

Decision node– guard conditions on the output edges select one of them for traversal
May optionally have inputs defined by a «decisionInput»

{join spec}

control node syntax control node semantics

See exam
ples on next tw

o slides
14.8

© Clear View Training 2010 v2.6 20

Decision and merge nodes

• A decision node is a control node that
has one input edge and two or more
alternate output edges

– Each edge out of the decision is
protected by a guard condition

– guard conditions must be mutually
exclusive

– The edge can be taken if and only if the
guard condition evaluates to true

– The keyword else specifies the path that
is taken if none of the guard conditions
are true

• A merge node accepts one of several
alternate flows

– It has two or more input edges and
exactly one output edge

Bin mailOpen mail

Get mail

[is junk]else

Process mail

keyword
guard
condition

decision
node

merge node

14.8.2

© Clear View Training 2010 v2.6 21

Fork and join nodes - concurrency

• Forks nodes model concurrent flows
of work
– Tokens on the single input edge are

replicated at the multiple output edges
• Join nodes synchronize two or more

concurrent flows
– Joins have two or more incoming edges

and exactly one outgoing edge
– A token is offered on the outgoing edge

when there are tokens on all the
incoming edges i.e. when the concurrent
flows of work have all finished

Design new
product

Market
product

Manufacture
product

Sell
product

Product process

fork node

join node

14.8.3

22

Activity Final Nodes vs. Flow Final
Nodes

© Robert B. France

© Clear View Training 2010 v2.6 23

Activity partitions

Location

Marketing Development

Create course
business case Develop course

Scheduling

Book trainers

Book roomsMarket course

Course production dimension name

activity partition

Schedule course

Zurich London

 Each activity partition
represents a high-level grouping
of a set of related actions
 Partitions can be hierarchical
 Partitions can be vertical,

horizontal or both
 Partitions can refer to many

different things e.g. business
organisations, classes,
components and so on

 If partitions can’t be shown
clearly using parallel lines, put
their name in brackets directly
above the name of the activities

(London::Marketing)
Market product

(p1, p2)
SomeAction

multiple partitionsnested partitions

14.6

24

Partitions/Swimlanes

© Robert B. France

25

Partitions using annotations

© Robert B. France

26

Dimensional partitions

© Robert B. France

27

Expanding
activities

© Robert B. France

© Clear View Training 2010 v2.6 28

Object nodes
• Object nodes indicate that instances of a

particular classifier may be available
– If no classifier is specified, then the object

node can hold any type of instance
• Multiple tokens can reside in an object

node at the same time
– The upper bound defines the maximum

number of tokens (infinity is the default)
• Tokens are presented to the single output

edge according to an ordering:
– FIFO – first in, first out (the default)
– LIFI – last in, first out
– Modeler defined – a selection criterion is

specified for the object node
OrderEvent

Orderobject
node

object
flow

object
node for
signal

classifier name
or node name

14.9

© Clear View Training 2010 v2.6 29

Object node syntax
• Object nodes have a

flexible syntax. You
may show:

– upper bounds
– ordering
– sets of objects
– selection criteria
– object in state

Order objects raised in December may be
available

zero to 12 Order objects may be available

Order

Set of Order

Order
[open]

Order«selection»
monthRaised = "Dec"

order objects may be available

sets of Order objects may be available

select Order objects in the open state

Order

{upperBound = 12}

Order

{ordering = LIFO}

last Order object in is the first out
(FIFO is the default)

14.9

© Clear View Training 2010 v2.6 30

Activity parameters

• Object nodes can provide input and output parameters to activities
– Input parameters have one or more output object flows into the activity
– Output parameters have one or more input object flows out of the activity

• Draw the object node overlapping the activity boundary

Design bespoke
product

Manufacture
product

Accept
payment

Deliver
product

Marketing Manufacturing Delivery

Order
[paid]

CustomerRequest

Set of
BusinessConstraint

Order
[delivered]

Bespoke product process

Order

input parameter

output
parameter

object flowobject in state

ProductSpecification

14.9.3

© Clear View Training 2010 v2.6 31

Pins

• Pins are object nodes for inputs to, and outputs from,
actions

– Same syntax as object nodes
– Input pins have exactly one input edge
– Output pins have exactly one output edge
– Exception pins are marked with an equilateral triangle
– Streaming pins are filled in black or marked with

{stream}

A B

A B
{stream}

streaming

GetUserName

GetPassword

UserName[valid]

Password[valid]

Authenticate
User LogError

LogOnException

LogOn

pin
exception pin

14.10

32

Input/Output pins
A pin represent an input or output data node

© Robert B. France

33

Exceptions

© Robert B. France

34

Timers

© Robert B. France

35

Interrupts

© Robert B. France

© Clear View Training 2010 v2.6 36

Summary
• We have seen how we can use activity diagrams to model flows of

activities using:
– Activities

• Connectors
– Activity partitions
– Action nodes

• Call action node
• Send signal/accept event action node
• Accept time event action node

– Control nodes
• decision and merge
• fork and join

– Object nodes
• input and output parameters
• pins

14.11

	An Introduction to Workflow Modeling using Activity Models
	Software Development Phases
	Slide Number 3
	Slide Number 4
	System/Business Process Engineering
	Modeling systems
	Modeling system workflows using activity diagrams
	Activities
	Key Activity Model symbols
	Simple example
	Activity diagram syntax
	Modeling activities
	Connectors
	Another example
	Activity diagram semantics
	Action nodes
	Types of action node
	Call action node syntax
	Control nodes
	Decision and merge nodes
	Fork and join nodes - concurrency
	Activity Final Nodes vs. Flow Final Nodes
	Activity partitions
	Partitions/Swimlanes
	Partitions using annotations
	Dimensional partitions
	Expanding activities
	Object nodes
	Object node syntax
	Activity parameters
	Pins
	Input/Output pins
	Exceptions
	Timers
	Interrupts
	Summary

