
1

Object Oriented Programming
(OOP): A Review

CS 314

“Furious activity is no substitute
for understanding” – H.H. Williams

Object-Oriented Programming
(OOP)

• Solution expressed as a set of
communicating objects

• An object encapsulates the behavior
and data related to a single concept
– Forms a cohesive unit

• Responsibility for performing a service
is distributed across a set of objects
– No one object should perform the entire

service

2

Key OOP Concepts
• (Program) Class: classification of objects with similar

attributes and behavior
• Object: instance of a class
• Inheritance: hierarchies of classes in which classes

at lower levels inherit features defined in classes at
higher levels

• Message: request for an object to perform an
operation on behalf of another object

• Dynamic binding: the ability to vary the object a
message is sent to at run-time; the target of a
message is determined at run-time, not at compile-
time

• Polymorphism: the ability to substitute objects that
share the same interface at run-time; dynamic
binding enables polymorphism

Program Class

• A program class describes objects that
have similar features

• Two types of features
– Data: instance variables

– Behavior: methods

3

Sample Java class
public class Person {

private String name;
private Date birthdate;

public Person(String name, Date birthdate) {
this.name = name;
this.birthdate = birthdate;

}

public String getName() {
return name;

}

public Date getBirthdate() {
return birthdate;

}
}

The UML class diagram for the Person class.

4

Class variables and methods
• Class (static) variables and methods should

be used sparingly in OOP
• Good uses of static variables

– To define constants
– To define properties of a class as opposed to

properties of class instances (e.g., the total
number of objects in the collection)

• OK uses of static methods
– To define methods that produce outputs using

only values passed in as parameters (e.g.,
methods in Math class)

Inheritance

• Also called “subclassing”
• Indicated in Java by keyword “extends”
• Uses:

– Specialize a superclass by adding new
behavior in a subclass

– Specialize a superclass by overriding
existing behavior in a subclass

– Generalize one or more subclasses by
creating a superclass and moving common
features up

5

UML inheritance notation

inheritance symbol

enumeration type

method override

method bodies

superclass

subclass

Specialization by overriding

• A subclass can redefine a superclass
method

• Example: FilledOval class overrides the
draw method of the Oval class to draw
a filled-in oval instead of a white oval
with black border

6

Multiple Inheritance
A Person class with two superclasses. This is

not legal in Java.

For c: C, what is called when c.foo() is executed?

The problem with multiple inheritance

7

Generalization

Classes with common properties

Generalization

8

Types and interfaces

• A type is a set of data values and the
operations that can be performed on
them.

• Example: The Java integer type has
232 values and has operations such as
addition, subtraction, multiplication, and
division.

Java classes as types

• Each Java class is a type

• The values of a class type are the
objects of the class or any subclasses

• The operations are the methods of the
class

9

Java interfaces as types

• Each Java interface is a type

• The values of such a type are the
objects of all classes that implement the
interface

• The operations are the methods
declared in the interface

A SimpleRunner class that implements the
Runnable interface and extends the Object

class.

10

Subtypes

• (Weak definition) A type S is a subtype of
type T if the set of objects of S form a
subset of the set of objects of T and the set
of operations of S are a superset of the set
of operations of T

• Example: Any subclass defines a subtype
of its superclass

Polymorphism
• Polymorphism: the ability to assume

different forms
• You can use an object of a subtype

wherever an object of a supertype is
expected.

• Example: LinkedList is an interface;
ArrayList is a class that implements
LinkedList
List l = new ArrayList();

List l = new LinkedList();

11

The List interface and two classes that
implement it.

Exploiting polymorphism: Design
for change

• Suppose you used LinkedLists (LLs) in your
program and now want to change some of
the LLs to ArrayLists (ALs)

• Change may require significant effort
– Need to identify all places where a LL is declared

or initialized and decide whether it should be
changed or not

– You may need to change calls to methods that are
defined only for LLs

• Change process repeated if sometime in the
future you decide to change ALs to some
other type of collection

12

Design for change
How can we design our program to accommodate

change?

1. Find an appropriate interface or super class –
List interface

2. Check to see if the methods provided in the
super class or interface can handle all linked list
manipulation needs

3. Declare list variables as interface or abstract
class types
List list = new ArrayList();

list.clear() will work if list is an ArrayList or any instance of a
class that implements List

Problem not completely solved

• How can we minimize changes in how the
variables are initialized?
– Recall that we need to find all places where LLs

are declared or initialized and decide whether to
replace with ALs

– i.e., replace occurrences of
List list = new LinkedList();

with
List list = new ArrayList();

13

Factory method approach

• Localize code that needs to be changed
– Factory method

Public class Manager {
Public List createNewList()
{ return new LinkedList();}

}
…
List list = manager.createNewList();

Formal notion of subtype: Liskov’s
Substitutability Principle

• Subtyping is a special form of
inheritance that supports Liskov’s
Substitutability Principle (LSP):
– “Whenever an instance of a class is

expected, one can always substitute an
instance of any of its subclasses.”

14

LSP and constraints
• Consequences of LSP for class invariants:

– A class invariant is a condition that is always true
for all objects of a class (e.g., “All sides are of
equal length in a square” is an invariant for a
Square class)

– An invariant is always inherited by each subclass.

– Subclasses must preserve the invariants of its
superclass.

• Consequences of LSP for preconditions and
postconditions:
– A precondition may be weakened (contravariance)

– A postcondition may be strengthened (covariance)

Is Square a subtype of
Rectangle?

15

What about this?

Abstract classes

• Abstract classes are denoted by the key
word “abstract”.

• Objects of such classes cannot be
created.

• Some of the methods can be declared
abstract, in which case subclasses must
implement those methods (or be
abstract themselves).

16

Abstract classes vs. interfaces

• Abstract classes can include method
implementations and non-final fields

• Abstract classes with no
implementations are like interfaces
except a class can extend only one
superclass in Java.

Dynamic method invocation

• In a method call v.foo(), the Java
runtime environment looks at the actual
class of the value of v, not the declared
type of v, to determine which
implementation of foo to execute.

17

Dynamic method invocation
example

• Suppose a class A has a method foo
that prints “A” and a subclass B has a
method foo that prints “B”.
A v = new B();

v.foo();

• The implementation of foo in class B is
the one that is executed (“B” is printed).

The abstract Automobile class and its
subclasses.

18

Dynamic method invocation
for Automobiles

Automobile[] fleet = new Automobile[]{

new Sedan(Color.black),

new Minivan(Color.blue),

new SportsCar(Color.red)};

int totalCapacity = 0;

for(Automobile car : fleet) {

totalCapacity += car.getCapacity();

}

Three different getCapacity methods are
executed in this loop (one in each subclass)

Dynamic invocation- how does it
work?

car.getCapacity();

1. Compiler determines that car is of type
Automobile and checks that
getCapacity() is declared in that class

2. At runtime, the implementation (or body) of
getCapacity() is determined based on
the actual type of object stored in car

19

Overloading vs. Overriding

• Overloading occurs when two methods
in the same class have the same name
but different parameter lists.

• Overriding concerns two methods, one
in a subclass and one in a superclass,
with identical signatures (name and
parameter list).

The Automobile class has two equals
methods, one inherited and one defined in

Automobile.

20

The Automobile class does not inherit the
Object class’ equals method. Instead, it

overrides that method.

Overloaded method example

Object o = new Object();

Automobile auto = new Automobile();

Object autoObject = new Automobile();

auto.equals(o);

auto.equals(auto);

auto.equals(autoObject);

Which of the two equals methods in the
Automobile class is executed in each of the
last 3 lines above?

