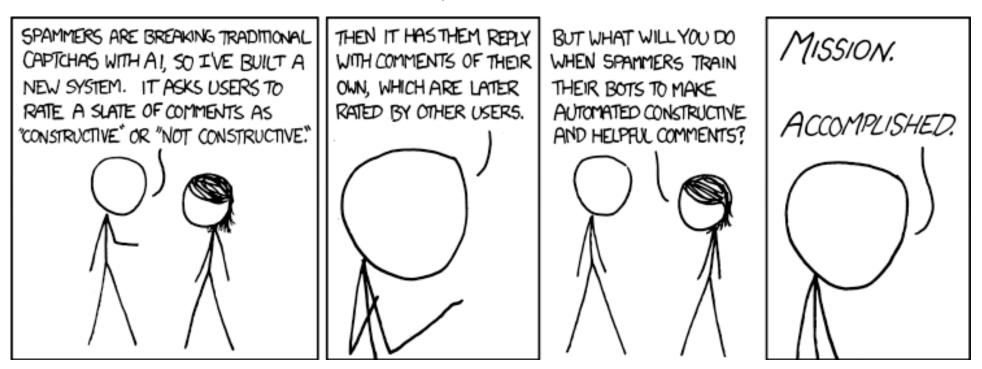
Linear models: Logistic regression

Chapter 3.3



Predicting probabilities

Objective: learn to predict a probability P(y | x) for a binary classification problem using a linear classifier

The target function:

$$\mathbb{P}[y = +1 \mid \mathbf{x}].$$

For positive examples P(y = +1 | x) = 1 whereas P(y = +1 | x) = 0 for negative examples.

Predicting probabilities

Objective: learn to predict a probability P(y | x) for a binary classification problem using a linear classifier

The target function:

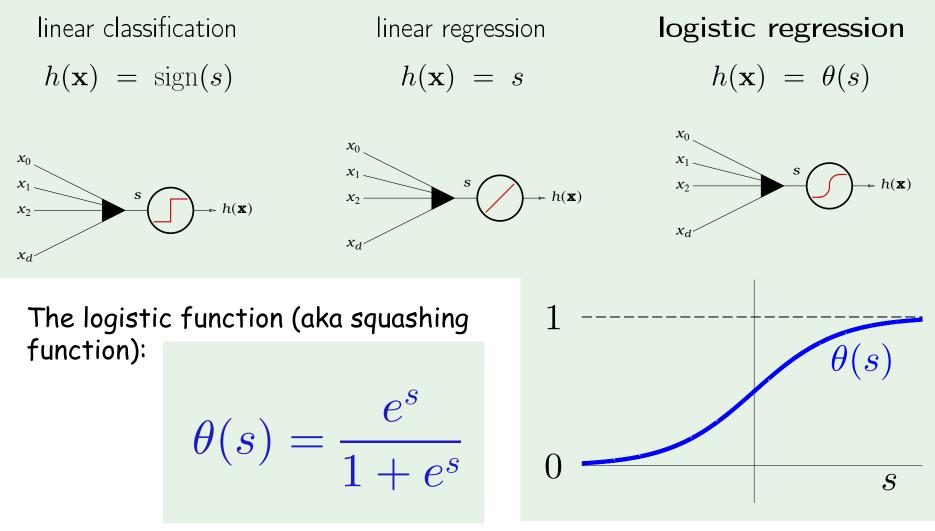
$$\mathbb{P}[y = +1 \mid \mathbf{x}].$$

For positive examples P(y = +1 | x) = 1 whereas P(y = +1 | x) = 0 for negative examples.

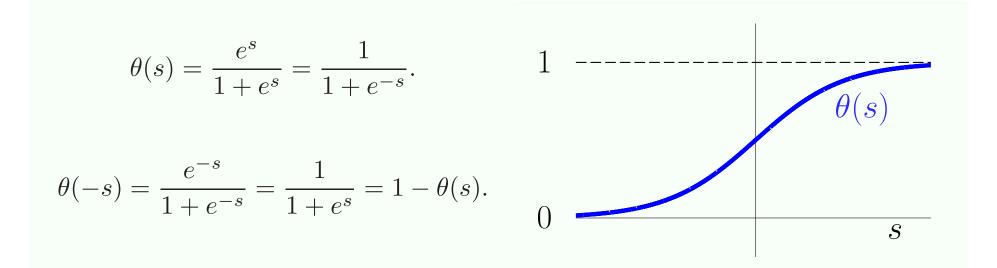
Can we assume that P(y = +1 | x) is linear?

Logistic regression

The signal $S = \mathbf{W}^{\mathsf{T}} \mathbf{X}$ is the basis for several linear models:



Properties of the logistic function



Predicting probabilities

Fitting the data means finding a good hypothesis h

h is good if:
$$\begin{cases} h(\mathbf{x}_n) \approx 1 & \text{whenever } y_n = +1; \\ h(\mathbf{x}_n) \approx 0 & \text{whenever } y_n = -1. \end{cases}$$

Suppose that $h(\mathbf{x}) = \theta(\mathbf{w}^{\mathsf{T}}\mathbf{x})$ closely captures $\mathbb{P}[+1|\mathbf{x}]$:

$$P(y \mid \mathbf{x}) = \begin{cases} \theta(\mathbf{w}^{\mathrm{T}}\mathbf{x}) & \text{for } y = +1; \\ 1 - \theta(\mathbf{w}^{\mathrm{T}}\mathbf{x}) & \text{for } y = -1. \end{cases}$$

Predicting probabilities

Fitting the data means finding a good hypothesis h

h is good if:
$$\begin{cases} h(\mathbf{x}_n) \approx 1 & \text{whenever } y_n = +1; \\ h(\mathbf{x}_n) \approx 0 & \text{whenever } y_n = -1. \end{cases}$$

Suppose that $h(\mathbf{x}) = \theta(\mathbf{w}^{T}\mathbf{x})$ closely captures $\mathbb{P}[+1|\mathbf{x}]$:

$$P(y \mid \mathbf{x}) = \begin{cases} \theta(\mathbf{w}^{\mathrm{T}}\mathbf{x}) & \text{for } y = +1; \\ \\ \theta(-\mathbf{w}^{\mathrm{T}}\mathbf{x}) & \text{for } y = -1. \end{cases}$$

More compactly: $P(y \mid \mathbf{x}) = \theta(y \cdot \mathbf{w}^{\mathrm{T}}\mathbf{x})$

Is logistic regression really linear?

$$P(y = +1|\mathbf{x}) = \frac{\exp(\mathbf{w}^{\mathsf{T}}\mathbf{x})}{\exp(\mathbf{w}^{\mathsf{T}}\mathbf{x}) + 1}$$
$$P(y = -1|\mathbf{x}) = 1 - P(y = +1|\mathbf{x}) = \frac{1}{\exp(\mathbf{w}^{\mathsf{T}}\mathbf{x}) + 1}$$

To figure out how the decision boundary looks like set

$$P(y = +1|\mathbf{x}) = P(y = -1|\mathbf{x})$$

solving for x we get:
$$\exp(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = 1$$

Maximum likelihood

We will find **w** using the principle of maximum likelihood.

Likelihood:

The probability of getting the y_1, \ldots, y_N in \mathcal{D} from the corresponding $\mathbf{x}_1, \ldots, \mathbf{x}_N$:

$$P(y_1,\ldots,y_N \mid \mathbf{x}_1,\ldots,\mathbf{x}_n) = \prod_{n=1}^N P(y_n \mid \mathbf{x}_n).$$

Valid since $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_N, y_N)$ are independently generated

Maximizing the likelihood

max	$\prod_{n=1}^{N} P(y_n \mid \mathbf{x}_n)$
$\Leftrightarrow \max$	$\ln\left(\prod_{n=1}^N P(y_n \mid \mathbf{x}_n)\right)$
$\equiv \max$	$\sum_{n=1}^{N} \ln P(y_n \mid \mathbf{x}_n)$
\Leftrightarrow min	$-\frac{1}{N}\sum_{n=1}^{N}\ln P(y_n \mid \mathbf{x}_n)$
\equiv min	$\frac{1}{N}\sum_{n=1}^{N}\ln\frac{1}{P(y_n \mathbf{x}_n)}$
\equiv min	$\frac{1}{N} \sum_{n=1}^{N} \ln \frac{1}{\theta(y_n \cdot \mathbf{w}^{\mathrm{T}} \mathbf{x}_n)}$
\equiv min	$\frac{1}{N}\sum_{n=1}^{N}\ln(1+e^{-y_n\cdot\mathbf{w}^{\mathrm{T}}\mathbf{x}_n})$

Maximizing the likelihood

Summary: maximizing the likelihood is equivalent to

minimize
$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \underbrace{\ln\left(1 + e^{-y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n}\right)}_{e\left(h(\mathbf{x}_n), y_n\right)}$$

Cross entropy error

Maximizing the likelihood

Summary: maximizing the likelihood is equivalent to

minimize
$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \underbrace{\ln\left(1 + e^{-y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n}\right)}_{e\left(h(\mathbf{x}_n), y_n\right)}$$

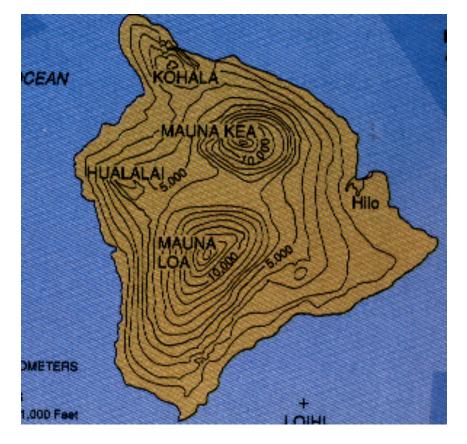
Cross entropy error

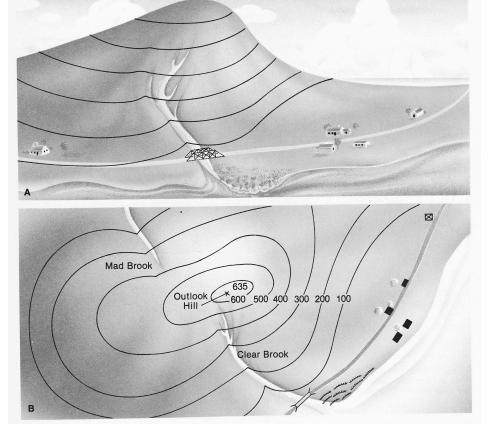
Exercise: check that this is equivalent to:

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} I(y_n = +1) \ln \frac{1}{h(\mathbf{x}_n)} + I(y_n = -1) \ln \frac{1}{1 - h(\mathbf{x}_n)}$$

Digression: gradient ascent/descent

Topographical maps can give us intuition on how to optimize a cost function



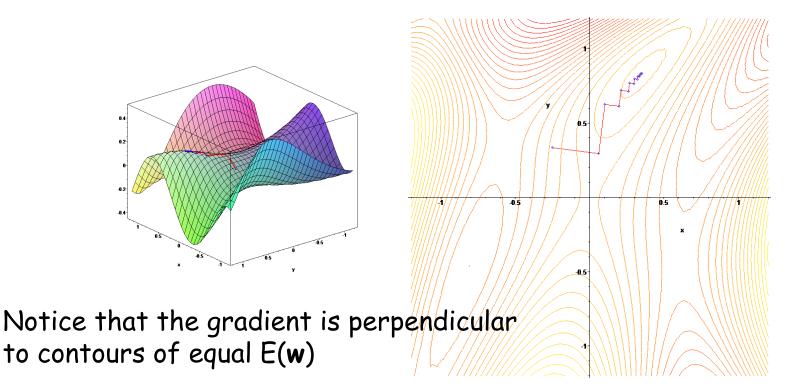


http://www.csus.edu/indiv/s/slaymaker/archives/geol10l/shield1.jpg

http://www.sir-ray.com/touro/IMG_0001_NEW.jpg

Digression: gradient descent

Given a function E(w), the gradient is the direction of steepest ascent Therefore to minimize E(w), take a step in the direction of the negative of the gradient

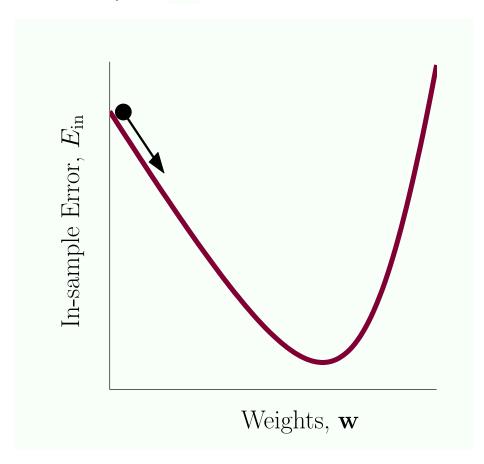


Gradient descent

Gradient descent is an iterative process

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \eta \hat{\mathbf{v}}$$

How to pick $\hat{\mathbf{v}}$?

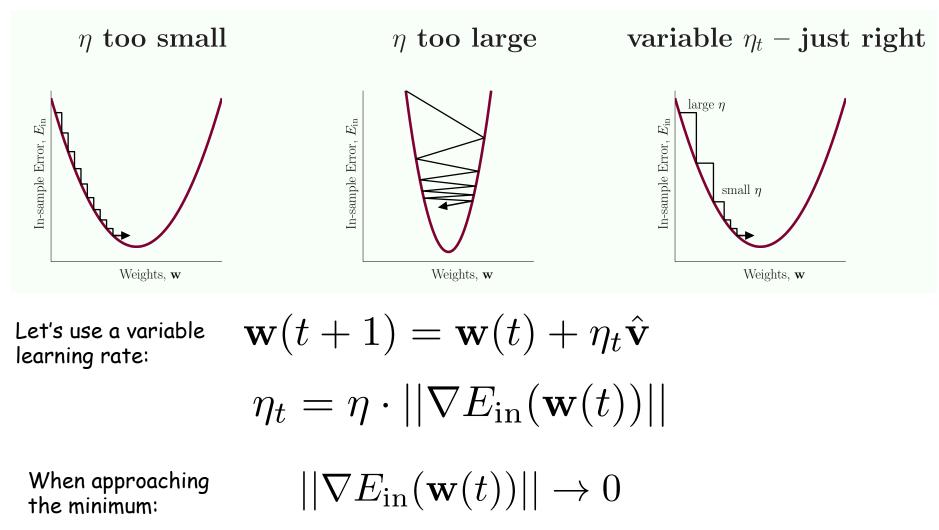


Gradient descent

The gradient is the best direction to take to optimize $E_{in}(w)$:

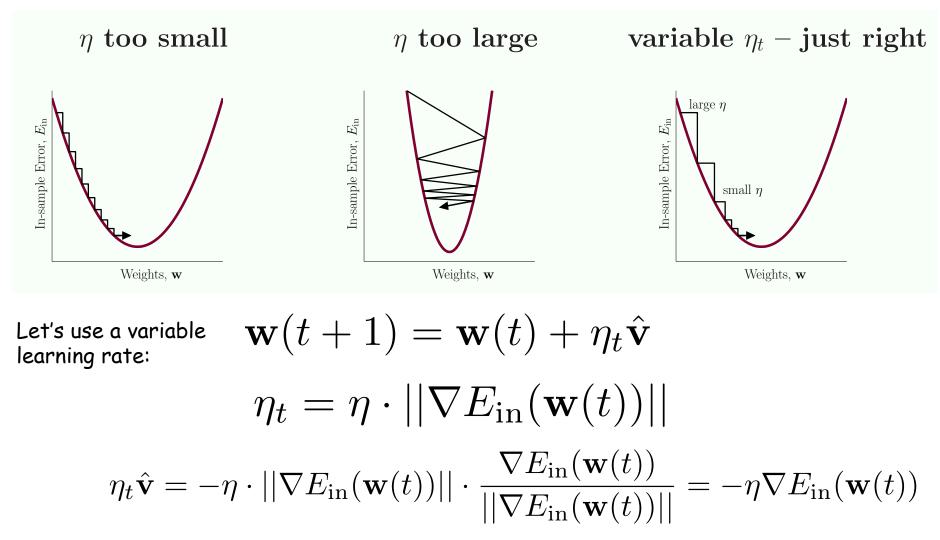
Choosing the step size

The choice of the step size affects the rate of convergence:



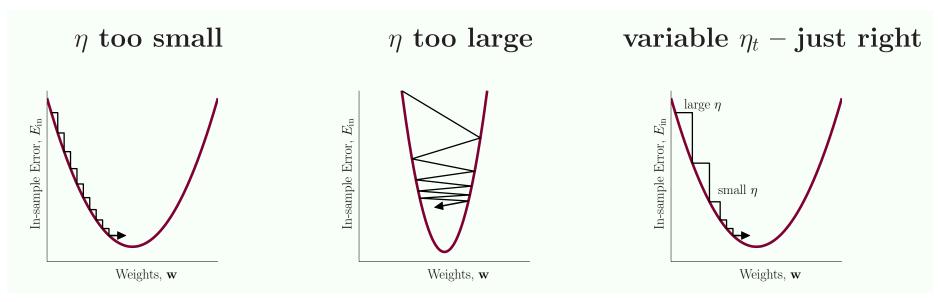
Choosing the step size

The choice of the step size affects the rate of convergence:



The final form of gradient descent

The choice of the step size affects the rate of convergence:

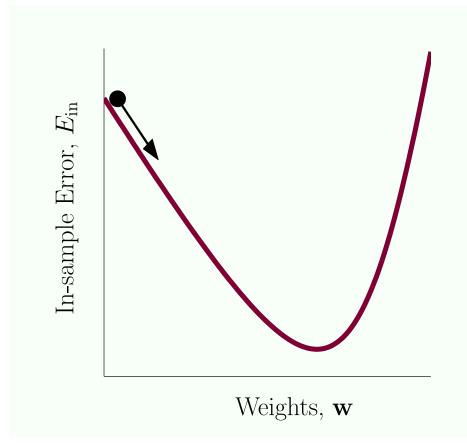


 $\mathbf{w}(t+1) = \mathbf{w}(t) - \eta \nabla E_{\mathrm{in}}(\mathbf{w}(t))$

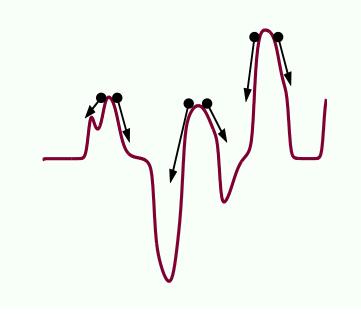
Logistic regression using gradient descent

We will use gradient descent to minimize our error function.

Fortunately, the logistic regression error function has a single global minimum:



So we don't need to worry about getting stuck in local minima



Logistic regression using gradient descent

Putting it all together:

- 1: Initialize at step t = 0 to $\mathbf{w}(0)$.
- 2: for $t = 0, 1, 2, \dots$ do
- 3: Compute the gradient

 $\mathbf{g}_t = \nabla E_{\rm in}(\mathbf{w}(t)).$

4: Move in the direction $\mathbf{v}_t = -\mathbf{g}_t$. 5: Update the weights:

 $\mathbf{w}(t+1) = \mathbf{w}(t) + \eta \mathbf{v}_t.$

- 6: Iterate 'until it is time to stop'.
- 7: end for
- 8: Return the final weights.

$$E_{\rm in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \underbrace{\ln\left(1 + e^{-y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n}\right)}_{e\left(h(\mathbf{x}_n), y_n\right)}$$

$$\nabla E_{\rm in} = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^{\mathsf{T}}(t) \mathbf{x}_n}}$$

Logistic regression

Comments:

- * Assumptions: i.i.d. data and specific form of P(y | x).
- In practice logistic regression is solved by faster methods than gradient descent
- * There is an extension to multi-class classification

Stochastic gradient descent

Variation on gradient descent that considers the error for a single training example:

$$E_{\mathrm{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \cdot \mathbf{w}^{\mathrm{T}} \mathbf{x}}) = \frac{1}{N} \sum_{n=1}^{N} e(\mathbf{w}, \mathbf{x}_n, y_n)$$

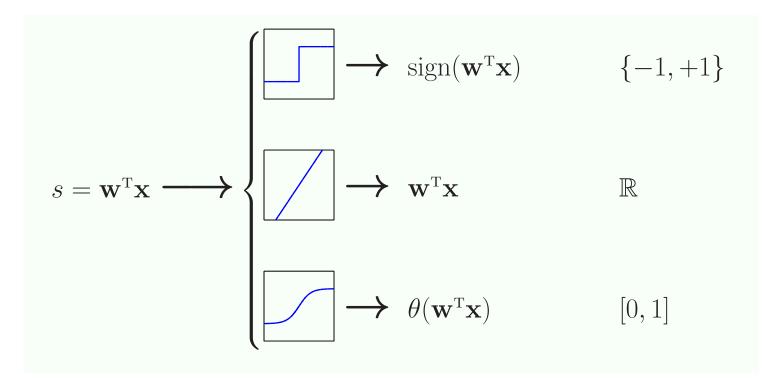
Pick a random data point (\mathbf{x}_*, y_*) Run an iteration of GD on $e(\mathbf{w}, \mathbf{x}_*, y_*)$

$$\mathbf{w}(t+1) \leftarrow \mathbf{w}(t) - \eta \nabla_{\mathbf{w}} e(\mathbf{w}, \mathbf{x}_*, y_*)$$

$$\mathbf{w}(t+1) \leftarrow \mathbf{w}(t) + \mathbf{y}_* \mathbf{x}_* \left(\frac{\eta}{1 + e^{y_* \mathbf{w}^{\mathrm{T}} \mathbf{x}_*}} \right)$$

Summary of linear models

Linear methods for classification and regression:



More to come!