Linear models:
Logistic regression

Chapter 3.3
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Predicting probabilities

Objective: learn to predict a probability P(y | x) for a binary
classification problem using a linear classifier

The target function: ]P[y — +1 ’ X].

For positive examples P(y = +1 | x) = I whereas P(y = +1 | x) =0
for negative examples.



Predicting probabilities

Objective: learn to predict a probability P(y | x) for a binary
classification problem using a linear classifier

The target function: ]P[y — +1 ’ X].

For positive examples P(y = +1 | x) = I whereas P(y = +1 | x) =0
for negative examples.

Can we assume that P(y = +1 | x) is linear?



Logistic regression

The sighal § — W T X is the basis for several linear models:
linear classification linear regression logistic regression
h(x) = sign(s) h(x) = s h(x) = 6(s)
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The logistic function (aka squashing
function):
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Properties of the logistic function




Predicting probabilities

Fitting the data means finding a good hypothesis h

[ h(x,) ~1 whenever y,, = +1;
h is good if: <

| h(x,) =~ 0  whenever y, = —1.

Suppose that h(x) = 8(w'x) closely captures P[+1|x]:

(H(wTx) for y = +1;

|1 -0(w'x) fory=—L



Predicting probabilities

Fitting the data means finding a good hypothesis h

[ h(x,) ~1 whenever y,, = +1;
h is good if: <

| h(x,) =~ 0  whenever y, = —1.

Suppose that h(x) = 0(w'x) closely captures P[+1|x]:

y

0(w'x) for y = +1;
P(y [ x) =

O(—w'x) fory=—1

More compactly: Py |x)=0(y - w'x)



Is logistic regression really linear?

exp(WTx)

P(y — ‘|‘1|X) — eXp(WTX) +1

Py = —1[x) = 1 - P(y = +1|x) = !

exp(WTx) + 1

To figure out how the decision boundary looks like set

P(y = +1|x) = P(y = —1[x) ’

solving for x we gef:

exp(wTx) =1



Maximum likelihood

We will find w using the principle of maximum likelihood.

Likelihood:
The probability of getting the yy,...,yy in D from the corresponding X1, ..., Xy:

N
P(yla7yN‘X177Xn):HP<yn’Xn>
n=1

Valid since (X1,v1), - .., (Xx,yn) are independently generated



Maximizing the likelihood
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In (Hg—l Py, | Xn))

Zg:l In P(yn ’ Xn)

B % 7]1\;1 In P(y, | x,)
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Maximizing the likelihood

Summary: maximizing the likelihood is equivalent to

N
1 i
_ —YnW Xn
minimize FEj,(w) = N 3:1 n(l—l—i ),
e(h(xn)ayn)

Cross entropy error

1



Maximizing the likelihood

Summary: maximizing the likelihood is equivalent to

N
1 T
minimize FE,(w) = ~ Z a (1 1 e UnW xn)J
n:]. '
e(h(xn),yn)

Cross entropy error

Exercise: check that this is equivalent to:

Em(W) — %Z](yn = —|—1) In h(}lin) —I—I(yn — —1) In 1 _ ;(Xn)



Digression: gradient ascent/descent

Topographical maps can give us intuition on how to optimize a
cost function

635
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http://www.csus.edu/indiv/s/slaymaker/archives/geol10l/shieldl.jpg http://www.sir-ray.com/touro/IMG_0001_NEW.jpg
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Digression: gradient descent

Given a function E(w), the gradient is the direction of steepest ascent
Therefore to minimize E(w), fake a step in the direction of the
negative of the gradient

Notice that the gradient is perpendicular /N
to contours of equal E(w) TN

Images from http://en.wikipedia.org/wiki/Gradient_descent 14



Gradient descent

Gradient descent is an iterative process

w(t+1)=w(t)+nv

How to pick v ?

In-sample Error, i,

Weights, w

15



Gradient descent

The gradient is the best direction to take to optimize E; (w):

AE, = Eu(w(t+1))— En(w(t))
= Ein(w(t) +nv) — Ein(w(t))

= nVEL(W(t)"™V+0(n?)

\ . J

L. . rr_ VEln(W(t))
minimized at v = — [V Em(w(?) ]
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Choosing the step size

The choice of the step size affects the rate of convergence:

n too small n too large variable 7n; — just right
2| 2| 5
= = =
2
s & 2
Weights, w Weights, w Weights, w

ereuseavariable W(l + 1) = w(t) + eV
e =1 [[VEn(W(t))]

When approaching ‘ ‘inn (W(t)) ’ ‘ 0

the minimum:
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Choosing the step size

The choice of the step size affects the rate of convergence:

n too small n too large variable 7n; — just right

K K
£5| =
= =

Weights, w Weights, w Weights, w

v WA 1) =w(t) + 0
ne =1 |[VEn(w(t))|]
o= (w VER(W() _ SR (w
s 1 - |V Ein(w(t))]] N B (w(0)] NV Ein (w(t))
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r, Ein

In-sample Erro

The final form of gradient descent

The choice of the step size affects the rate of convergence:

n too small n too large variable 7n; — just right

ple Error, Ei,

In-sample Error, Ej,

Weights, w

Weights, w Weights, w

w(t+ 1) =w(t) = nVEi(w(t))
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Logistic regression using gradient descent

We will use gradient descent o minimize our error function.

Fortunately, the logistic regression error function has a single
global minimum:

So we don't need to worry about
getting stuck in local minima

In-sample Error, F;,

Weights, w
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Logistic regression using gradient descent

Putting it all together:

. Initialize at step t = 0 to w(0).

fort=0,1,2,...do
Compute the gradient

p— VEIH(W(t)) n=1 e(h(;r)y )
Move in the direction v; = —g;. v
Update the weights: VE, — 1 YnXn

w(t+1) =w(t) + nvy.

[terate ‘until it is time to stop’.

. end for

Return the final weights.
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Logistic regression

Comments:
. Assumptions: i.i.d. data and specific form of P(y | x).

. In practice logistic regression is solved by faster
methods than gradient descent

+ There is an extension to multi-class classification
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Stochastic gradient descent

Variation on gradient descent that considers the error for
a single training example:

N N
1 T 1
En(w) = NE In(1+e ) = — )~ e(W, Xn, Yn)

Pick a random data point (X, y)

Run an iteration of GD on e(w, x,, 9 )

w(t+ 1) < w(t) — nVye(W, X, Ys)

U
w(t+1) < w(t) + y.x, T
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Summary of linear models

Linear methods for classification and regression:

s=wIx —>«

/

More to comel

/

—> sign(w'x)

{—1,+1}
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