Let's use a One-vs-the-rest classifier on the iris dataset. The data has four features that describe features of three types of iris flowers.
import numpy as np from sklearn import datasets from sklearn.multiclass import OneVsRestClassifier,OneVsOneClassifier from sklearn.svm import LinearSVC,SVC from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import cross_validate # load the iris dataset: iris = datasets.load_iris() X, y = iris.data, iris.target cv_generator = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) # one-vs-the-rest classifier = OneVsRestClassifier(LinearSVC()) #classifier = OneVsRestClassifier(SVC(C=1, kernel='linear')) results_ovr = cross_validate(classifier, X, y, cv=cv_generator, scoring='accuracy', return_train_score=False) np.mean(results_ovr['test_score']) # one-vs-one classifier = OneVsOneClassifier(LinearSVC()) results_ovo = cross_validate(classifier, X, y, cv=cv_generator, scoring='accuracy', return_train_score=False) np.mean(results_ovo['test_score']) # does this mean that one-vs-one is better? not necessarily... classifier = OneVsRestClassifier(SVC(C=1, kernel='rbf', gamma=0.5)) results_ovr_nonlinear = cross_validate(classifier, X, y, cv=cv_generator, scoring='accuracy', return_train_score=False) np.mean(results_ovr_nonlinear['test_score'])