Here's the neural network code I showed in class:
""" Feed-forward neural networks trained using backpropagation based on code from http://rolisz.ro/2013/04/18/neural-networks-in-python/ """ import numpy as np def tanh(x): return np.tanh(x) def tanh_deriv(x): return 1.0 - np.tanh(x)**2 def logistic(x): return 1/(1 + np.exp(-x)) def logistic_derivative(x): return logistic(x)*(1-logistic(x)) class NeuralNetwork: def __init__(self, layers, activation='tanh') : """ layers: A list containing the number of units in each layer. Should contain at least two values activation: The activation function to be used. Can be "logistic" or "tanh" """ if activation == 'logistic': self.activation = logistic self.activation_deriv = logistic_derivative elif activation == 'tanh': self.activation = tanh self.activation_deriv = tanh_deriv self.num_layers = len(layers) - 1 self.weights = [ np.random.randn(layers[i - 1] + 1, layers[i] + 1)/10 for i in range(1, len(layers) - 1) ] self.weights.append(np.random.randn(layers[-2] + 1, layers[-1])/10) def forward(self, x) : """ compute the activation of each layer in the network """ a = [x] for i in range(self.num_layers) : a.append(self.activation(np.dot(a[i], self.weights[i]))) return a def backward(self, y, a) : """ compute the deltas for example i """ deltas = [(y - a[-1]) * self.activation_deriv(a[-1])] for l in range(len(a) - 2, 0, -1): # we need to begin at the second to last layer deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l])) deltas.reverse() return deltas def fit(self, X, y, learning_rate=0.2, epochs=50): X = np.asarray(X) temp = np.ones( (X.shape[0], X.shape[1]+1)) temp[:, 0:-1] = X # adding the bias unit to the input layer X = temp y = np.asarray(y) for k in range(epochs): if k%10==0 : print ("***************** ", k, "epochs ***************") I = np.random.permutation(X.shape[0]) for i in I : a = self.forward(X[i]) deltas = self.backward(y[i], a) # update the weights using the activations and deltas: for i in range(len(self.weights)): layer = np.atleast_2d(a[i]) delta = np.atleast_2d(deltas[i]) self.weights[i] += learning_rate * layer.T.dot(delta) def predict(self, x): x = np.asarray(x) temp = np.ones(x.shape[0]+1) temp[0:-1] = x a = temp for l in range(0, len(self.weights)): a = self.activation(np.dot(a, self.weights[l])) return a def load_digits_data(corrupt=True) : from sklearn.datasets import load_digits digits = load_digits() X = digits.data if (corrupt) : X = X + np.random.binomial(1, 0.5, X.shape) * np.random.uniform(1, 15, X.shape) y = digits.target X /= X.max() return X,y def train_test_evaluate(X, y) : from sklearn.cross_validation import train_test_split from sklearn.metrics import confusion_matrix, classification_report from sklearn.preprocessing import LabelBinarizer layers = [64, 100, 20, 10] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0) labels_train = LabelBinarizer().fit_transform(y_train) labels_test = LabelBinarizer().fit_transform(y_test) nn = NeuralNetwork(layers, 'logistic') nn.fit(X_train,labels_train,epochs=10) predictions = [] for i in range(X_test.shape[0]) : o = nn.predict(X_test[i]) predictions.append(np.argmax(o)) print (confusion_matrix(y_test,predictions)) print (classification_report(y_test,predictions)) if __name__=='__main__' : X,y = load_digits_data(corrupt = True) train_test_evaluate(X, y)