First some code for plotting the results:
import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap def plot_boundary(classifier, X, y) : classifier.fit(X, y) h = .02 # mesh size # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = classifier.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.show()
""" Nearest neighbor classification with scikit-learn full details at: http://scikit-learn.org/stable/modules/neighbors.html#classification """ import numpy as np from sklearn import neighbors, datasets import decision_boundary # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # take the first two features. y = iris.target # the parameters of the scikit-learn nearest neighbor # classifier: # sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, # weights='uniform', algorithm='auto', leaf_size=30, p=2, # metric='minkowski') # weights refers to how to weight each example # 'algorithm' is the choice of algorithm for storing the # training data ('brute', 'ball_tree', 'kd-tree') # complete description of the available metrics: # http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html#sklearn.neighbors.DistanceMetric classifier = neighbors.KNeighborsClassifier(n_neighbors=10) decision_boundary.plot_boundary(classifier, X, y)