Let's use a One-vs-the-rest classifier on the iris dataset. The data has four features that describe features of three types of iris flowers.
import numpy as np from sklearn import datasets from sklearn.multiclass import OneVsRestClassifier,OneVsOneClassifier from sklearn.svm import LinearSVC,SVC from sklearn import cross_validation # load the iris dataset: iris = datasets.load_iris() X, y = iris.data, iris.target # prepare cross validation folds cv = cross_validation.StratifiedKFold(y, 5, shuffle=True, random_state=0) # one-vs-the-rest classifier = OneVsRestClassifier(LinearSVC()) print (np.mean(cross_validation.cross_val_score(classifier, X, y, cv=cv))) # one-vs-one classifier = OneVsOneClassifier(LinearSVC()) print (np.mean(cross_validation.cross_val_score(classifier, X, y, cv=cv))) # does this mean that one-vs-one is better? not necessarily... classifier = OneVsRestClassifier(SVC(C=1, kernel='rbf', gamma=0.5)) print (np.mean(cross_validation.cross_val_score(classifier, X, y, cv=cv)))