Warning: Declaration of action_plugin_tablewidth::register(&$controller) should be compatible with DokuWiki_Action_Plugin::register(Doku_Event_Handler $controller) in /s/bach/b/class/cs545/public_html/fall16/lib/plugins/tablewidth/action.php on line 93
assignments:assignment3 [CS545 fall 2016]

User Tools

Site Tools


assignments:assignment3

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
assignments:assignment3 [2013/10/06 11:54]
asa
assignments:assignment3 [2013/10/06 15:23]
asa
Line 12: Line 12:
 ===== Part 2:  Closest Centroid Algorithm ===== ===== Part 2:  Closest Centroid Algorithm =====
  
-Express the closest centroid algorithm in terms of kernels, i.e. determine how the coefficients $\alpha_i$ will be determined ​using a given labeled dataset.+Express the closest centroid algorithm in terms of kernels, i.e. determine how the coefficients $\alpha_i$ will be computed ​using a given labeled dataset.
  
-===== Part 3:  Using SVMs =====+===== Part 3:  Soft-margin for separable data ===== 
 + 
 +Consider training a soft-margin SVM  
 +with $C$ set to some positive constant. Suppose the training data is linearly separable. 
 +Since increasing the $\xi_i$ can only increase the objective of the primal problem (which 
 +we are trying to minimize), at the optimal solution to the primal problem, all the 
 +training examples will have $\xi_i$ equal 
 +to zero. True or false? ​ Explain! 
 +Given a linearly separable dataset, is it necessarily better to use a 
 +a hard margin SVM over a soft-margin SVM? 
 + 
 +===== Part 4:  Using SVMs =====
  
 The data for this question comes from a database called SCOP (structural The data for this question comes from a database called SCOP (structural
Line 36: Line 47:
   * A. Ben-Hur and D. Brutlag. [[http://​bioinformatics.oxfordjournals.org/​content/​19/​suppl_1/​i26.abstract | Remote homology detection: a motif based approach]]. In: Proceedings,​ eleventh international conference on intelligent systems for molecular biology. Bioinformatics 19(Suppl. 1): i26-i33, 2003.   * A. Ben-Hur and D. Brutlag. [[http://​bioinformatics.oxfordjournals.org/​content/​19/​suppl_1/​i26.abstract | Remote homology detection: a motif based approach]]. In: Proceedings,​ eleventh international conference on intelligent systems for molecular biology. Bioinformatics 19(Suppl. 1): i26-i33, 2003.
  
-Download the dataset associated with this assignment from the homework +In this part of the assignment we will explore the dependence of classifier accuracy on  
-page of the course. +the kernel, kernel parameters, kernel normalization,​ and SVM parameter soft-margin ​parameter. 
-In this assignment we will explore the dependence of classifier accuracy on  +The use of the SVM class is discussed in the PyML [[http://​pyml.sourceforge.net/​tutorial.html#​svms|tutorial]], and by using help(SVM) in the python interpreter.
-the kernel, kernel parameters, kernel normalization,​ and SVM parameter. +
-The use of the SVM class is discussed in the PyML [[http://​pyml.sourceforge.net/​tutorial.html#​svms|tutorial]].+
  
-By default a dataset is instantiated with a linear kernel attached to it.+By defaulta dataset is instantiated with a linear kernel attached to it.
 To use a different kernel you need to attach a new kernel to the dataset: To use a different kernel you need to attach a new kernel to the dataset:
 <code python> <code python>
Line 53: Line 62:
 >>>​ data.attachKernel(ker.Polynomial(degree = 3)) >>>​ data.attachKernel(ker.Polynomial(degree = 3))
 </​code>​ </​code>​
 +Alternatively,​ you can instantiate an SVM with a given kernel:
 +<code python>
 +>>>​ classifier = SVM(ker.Gaussian(gamma = 0.1))
 +</​code>​
 +This will override the kernel the data is associated with.
 +
 In this question we will consider both the Gaussian and polynomial kernels: In this question we will consider both the Gaussian and polynomial kernels:
 $$ $$
-K_{gaus}(\mathbf{x},​ \mathbf{x'​}) = \exp(-\gamma || \mathbf{x} - \mathbf{x}'​ ||^2)+K_{gauss}(\mathbf{x},​ \mathbf{x'​}) = \exp(-\gamma || \mathbf{x} - \mathbf{x}'​ ||^2)
 $$ $$
 $$ $$
 K_{poly}(\mathbf{x},​ \mathbf{x'​}) = (1 + \mathbf{x}^T \mathbf{x}'​) ^{p} K_{poly}(\mathbf{x},​ \mathbf{x'​}) = (1 + \mathbf{x}^T \mathbf{x}'​) ^{p}
 $$ $$
-Plot the accuracy of the classifier, measured using the success rate and the area under the ROC curve +Plot the accuracy of the SVM, measured using the balnced ​success rate 
-as a function of both the ridge parameter of the classifier, and the free parameter+as a function of both the soft-margin ​parameter of the SVM, and the free parameter
 of the kernel function. of the kernel function.
 Show a couple of representative cross sections of this plot for a given value Show a couple of representative cross sections of this plot for a given value
Line 67: Line 82:
 Comment on the results. ​ When exploring the values of a continuous Comment on the results. ​ When exploring the values of a continuous
 classifier/​kernel parameter it is classifier/​kernel parameter it is
-useful use values that are distributed on an exponential grid,+useful ​to use values that are distributed on an exponential grid,
 i.e. something like 0.01, 0.1, 1, 10, 100 (note that the degree of the i.e. something like 0.01, 0.1, 1, 10, 100 (note that the degree of the
 polynomial kernel is not such a parameter). polynomial kernel is not such a parameter).
  
- +For this type of sparse dataset it is useful to normalize the input features.
-For this type of sparse dataset it is useful to normalize the input features ​before +
-training and testing your classifier.+
 One way to do so is to divide each input example by its norm.  This is One way to do so is to divide each input example by its norm.  This is
 accomplished in PyML by: accomplished in PyML by:
assignments/assignment3.txt · Last modified: 2016/09/20 09:34 by asa