
Deep learning

1

Deep learning is hot

The 2012 ImageNet visual recognition challenge
1000 classes, 1,431,167 images

Geoff Hinton’s group: 16% error
Best other competitor: 26%

Current level of error: around 5% error

2

Dalmatian

http://www.image-net.org/

Deep learning is hot

Google, Microsoft and Facebook use it.

Stories in Wired magazine:
http://www.wired.com/2014/06/skymind-deep-learning/
http://www.wired.com/2014/01/geoffrey-hinton-deep-learning/
http://www.wired.com/2013/03/google_hinton/
http://www.wired.com/2013/12/facebook-yann-lecun-qa/

3

Deep learning

Deep learning: neural architectures with lots of layers.
An umbrella name for lots of different network architectures

A neural network with a single hidden layer can approximate any
function.

However, a network with multiple layers can represent the
target function more efficiently.

4

Interpreting network weights

5

6.6. BACKPROPAGATION, BAYES THEORY AND PROBABILITY 25

sample training patterns

learned input-to-hidden weights

Figure 6.14: The top images represent patterns from a large training set used to train
a 64-2-3 sigmoidal network for classifying three characters. The bottom figures show
the input-to-hidden weights (represented as patterns) at the two hidden units after
training. Note that these learned weights indeed describe feature groupings useful for
the classification task. In large networks, such patterns of learned weights may be
difficult to interpret in this way.

6.6.1 Bayes discriminants and neural networks

As we saw in Chap. ?? Sect. ??, the LMS algorithm computed the approximation to
the Bayes discriminant function for two-layer nets. We now generalize this result in
two ways: to multiple categories and to nonlinear functions implemented by three-
layer neural networks. We use the network of Fig. 6.4 and let gk(x; w) be the output
of the kth output unit — the discriminant function corresponding to category ωk.
Recall first Bayes’ formula,

P (ωk|x) =
P (x|ωk)P (ωk)
c∑

i=1
P (x|ωi)P (ωi)

=
P (x,ωk)

P (x)
, (22)

and the Bayes decision for any pattern x: choose the category ωk having the largest
discriminant function gk(x) = P (ωk|x).

Suppose we train a network having c output units with a target signal according
to:

tk(x) =
{

1 if x ∈ ωk

0 otherwise. (23)

(In practice, teaching values of ±1 are to be preferred, as we shall see in Sect. 6.8; we
use the values 0–1 in this derivation for computational simplicity.) The contribution
to the criterion function based on a single output unit k for finite number of training
samples x is:

J(w) =
∑

x

[gk(x; w)− tk]2 (24)

Top: images used to train a 64-2-3 network
Bottom: the weights associated with each of the two hidden units after
training.

Decomposing a learning problem

Suppose we would like to learn to distinguish between the digits
‘1’ and ‘5’

Decompose the digits into small components that characterize
them.

A ‘1’ should contain features 1 and 2.
A ‘5’ should contain 3,4,5,6

6

e
-C

H
A
P
T
E
R

e-7. Neural Networks7.6. Deep Learning: Networks with Many Layers

conjugate gradients

steepest descent

optimization time (sec)

lo
g 1

0
(e

rr
or
)

0.1 1 10 102 103 104

-8

-6

-4

-2

0

Figure 7.5: Steepest descent versus conjugate gradient descent using 200
examples of the digits data and a 2-layer sigmoidal neural network with 5
hidden units.

Optimization Time
Method 10 sec 1,000 sec 50,000 sec

Steepest Descent 0.043 0.0189 1.2× 10−5

Conjugate Gradients 0.0200 1.13× 10−6 2.73× 10−9

The performance difference is dramatic. !

7.6 Deep Learning: Networks with Many Layers

Universal approximation says that a single hidden layer with enough hidden
units can approximate any target function. But, that may not be a natural
way to represent the target function. Often, many layers more closely mimics
human learning. Let’s get our feet wet with the digit recognition problem to
classify ‘1’ versus ‘5’. A natural first step is to decompose the two digits into
basic components, just as one might break down a face into two eyes, a nose,
a mouth, two ears, etc. Here is one attempt for a prototypical ‘1’ and ‘5’.

φ1 φ2 φ3 φ4 φ5 φ6

c© AM
L Abu-Mostafa, Magdon-Ismail, Lin: Jan-2015 e-Chap:7–36

Constructing a network

Given the features we can construct a network:

How do we automate the process?

7
e
-C

H
A
P
T
E
R

e-7. Neural Networks7.6. Deep Learning: Networks with Many Layers

Indeed, we could plausibly argue that every ‘1’ should contain a φ1, φ2 and φ3;
and, every ‘5’ should contain a φ3, φ4, φ5, φ6 and perhaps a little φ1. We have
deliberately used the notation φi which we used earlier for the coordinates of
the feature transform Φ. These basic shapes are features of the input, and, for
example, we would like φ1 to be large (close to 1) if its corresponding feature
is in the input image and small (close to -1) if not.

Exercise 7.17

The basic shape φ3 is in both the ‘1’ and the ‘5’. What other digits do
you expect to contain each basic shape φ1 · · ·φ6. How would you select
additional basic shapes if you wanted to distinguish between all the digits.
(What properties should useful basic shapes satisfy?)

We can build a classifier for ‘1’ versus ‘5’ from these basic shapes. Remember
how, at the beginning of the chapter, we built a complex Boolean function
from the ‘basic’ functions and and or? Let’s mimic that process here. The
complex function we are building is the digit classifier and the basic functions
are our features. Assume, for now, that we have feature functions φi which
compute the presence (+1) or absence (−1) of the corresponding feature. Take
a close look at the following network and work it through from input to output.

,

is it a ‘1’? ! " is it a ‘5’?

#

z1 z5

φ1
φ2 φ3 φ4 φ5 φ6

+ve weight

−ve weight

Ignoring details like the exact values of the weights, node z1 answers the
question “is the image a ‘1’?” and similarly node z5 answers “is the image a
‘5’?” Let’s see why. If they have done their job correctly when we feed in a
‘1’, φ1,φ2,φ3 compute +1, and φ4,φ5,φ6 compute −1. Combining φ1, . . . ,φ6

with the signs of the weights on outgoing edges, all the inputs to z1 will be
positive hence z1 outputs +1; all but one of the inputs into z5 are negative,
hence z5 outputs −1. A similar analysis holds if you feed in the ‘5’. The final

c© AM
L Abu-Mostafa, Magdon-Ismail, Lin: Jan-2015 e-Chap:7–37

Low level
representation

High level
representation

Training deep networks

It is difficult to train very deep networks.
Alternative: training layer by layer

At each step only the weights of a single layer are optimized

8

e
-C

H
A
P
T
E
R

e-7. Neural Networks7.6. Deep Learning: Networks with Many Layers

(a) (b) (c) (d)

Figure 7.6: Greedy deep learning algorithm. (a) First layer weights are
learned. (b) First layer is fixed and second layer weights are learned. (c)
First two layers are fixed and third layer weights are learned. (d) Learned
weights can be used as a starting point to fine-tune the entire network.

7.6.1 A Greedy Deep Learning Algorithm

Historically, the shallow (single hidden layer) neural network was favored over
the deep network because deep networks are hard to train, suffer from many
local minima and, relative to the number of tunable parameters, they have a
very large tendency to overfit (composition of nonlinearities is typically much
more powerful than a linear combination of nonlinearities). Recently, some
simple heuristics have shown good performance empirically and have brought
deep networks back into the limelight. Indeed, the current best algorithm for
digit recognition is a deep neural network trained with such heuristics.

The greedy heuristic has a general form. Learn the first layer weights
W(1) and fix them.13 The output of the first hidden layer is a nonlinear

transformation of the inputs xn → x
(1)
n . These outputs x

(1)
n are used to train

the second layer weights W(2), while keeping the first layer weights fixed. This
is the essence of the greedy algorithm, to ‘greedily’ pick the first layer weights,
fix them, and then move on to the second layer weights. One ignores the
possibility that better first layer weights might exist if one takes into account
what the second layer is doing. The process continues with the outputs x(2)

used to learn the weights W(3), and so on.

13Recall that we use the superscript (·)(!) to denote the layer !.

c© AM
L Abu-Mostafa, Magdon-Ismail, Lin: Jan-2015 e-Chap:7–39

Training deep networks

9

e
-C

H
A
P
T
E
R

e-7. Neural Networks7.6. Deep Learning: Networks with Many Layers

(a) (b) (c) (d)

Figure 7.6: Greedy deep learning algorithm. (a) First layer weights are
learned. (b) First layer is fixed and second layer weights are learned. (c)
First two layers are fixed and third layer weights are learned. (d) Learned
weights can be used as a starting point to fine-tune the entire network.

7.6.1 A Greedy Deep Learning Algorithm

Historically, the shallow (single hidden layer) neural network was favored over
the deep network because deep networks are hard to train, suffer from many
local minima and, relative to the number of tunable parameters, they have a
very large tendency to overfit (composition of nonlinearities is typically much
more powerful than a linear combination of nonlinearities). Recently, some
simple heuristics have shown good performance empirically and have brought
deep networks back into the limelight. Indeed, the current best algorithm for
digit recognition is a deep neural network trained with such heuristics.

The greedy heuristic has a general form. Learn the first layer weights
W(1) and fix them.13 The output of the first hidden layer is a nonlinear

transformation of the inputs xn → x
(1)
n . These outputs x

(1)
n are used to train

the second layer weights W(2), while keeping the first layer weights fixed. This
is the essence of the greedy algorithm, to ‘greedily’ pick the first layer weights,
fix them, and then move on to the second layer weights. One ignores the
possibility that better first layer weights might exist if one takes into account
what the second layer is doing. The process continues with the outputs x(2)

used to learn the weights W(3), and so on.

13Recall that we use the superscript (·)(!) to denote the layer !.

c© AM
L Abu-Mostafa, Magdon-Ismail, Lin: Jan-2015 e-Chap:7–39

e
-C

H
A
P
T
E
R

e-7. Neural Networks7.6. Deep Learning: Networks with Many Layers

Greedy Deep Learning Algorithm:

1: for ! = 1, . . . , L do
2: W(1) · · ·W(!−1) are given from previous iterations.

3: Compute layer !− 1 outputs x
(!−1)
n for n = 1, . . . , N .

4: Use {x(!−1)
n } to learn weights W! by training a single

hidden layer neural network. (W(1) · · ·W(!−1) are fixed.)

output

x
(!−1)
n , n = 1, . . . , N

W(!)

V
hidden layer

error measure

We have to clarify step 4 in the algorithm. The weights W(!) and V are
learned, though V is not needed in the algorithm. To learn the weights, we
minimize an error (which will depend on the output of the network), and that
error is not yet defined. To define the error, we must first define the output
and then how to compute the error from the output.

Unsupervised Auto-encoder. One approach is to take to heart the notion
that the hidden layer gives a high-level representation of the inputs. That is,
we should be able to reconstruct all the important aspects of the input from
the hidden layer output . A natural test is to reconstruct the input itself: the
output will be x̂n, a prediction of the input xn; and, the error is the difference
between the two. For example, using squared error,

en = ‖x̂n − xn‖2.

When all is said and done, we obtain the weights without using the targets
yn and the hidden layer gives an encoding of the inputs, hence the name
unsupervised auto-encoder. This is reminiscent of the radial basis function
network in Chapter 6, where we used an unsupervised technique to learn the
centers of the basis functions, which provided a representative set of inputs
as the centers. Here, we go one step further and dissect the input-space itself
into pieces that are representative of the learning problem. At the end, the
targets have to be brought back into the picture (usually in the output layer).

Supervised Deep Network. The previous approach adheres to the philo-
sophical goal that the hidden layers provide an ‘intelligent’ hierarchical rep-
resentation of the inputs. A more direct approach is to train the two-layer
network on the targets. In this case the output is the predicted target ŷn and
the error measure en(yn, ŷn) would be computed in the usual way (for example
squared error, cross entropy error, etc.).

c© AM
L Abu-Mostafa, Magdon-Ismail, Lin: Jan-2015 e-Chap:7–40

Deep networks for the 1 vs 5 problem

Features learned using a network with 3 layers with 6,2,1
neurons per layer (digits are 16x16 pixels)

10

e
-C

H
A
P
T
E
R

e-7. Neural Networks7.6. Deep Learning: Networks with Many Layers

In practice, there is no verdict on which method is better, with the unsu-
pervised auto-encoder camp being slightly more crowded than the supervised
camp. Try them both and see what works for your problem, that’s usually
the best way. Once you have your error measure, you just reach into your
optimization toolbox and minimize the error using your favorite method (gra-
dient descent, stochastic gradient descent, conjugate gradient descent, . . .). A
common tactic is to use the unsupervised auto-encoder first to set the weights
and then fine tune the whole network using supervised learning. The idea is
that the unsupervised pass gets you to the right local minimum of the full
network. But, no matter which camp you belong to, you still need to choose
the architecture of the deep network (number of hidden layers and their sizes),
and there is no magic potion for that. You will need to resort to old tricks
like validation, or a deep understanding of the problem (our hand made
network for the ‘1’ versus ‘5’ task suggests a deep network with six hidden
nodes in the first hidden layer and two in the second).

Exercise 7.19

Previously, for our digit problem, we used symmetry and intensity. How do
these features relate to deep networks? Do we still need them?

Example 7.5. Deep Learning For Digit Recognition. Let’s revisit the
digits classification problem ‘1’ versus ‘5’ using a deep network architecture

[d(0), d(1), d(2), d(3)] = [256, 6, 2, 1].

(The same architecture we constructed by hand earlier, with 16 × 16 input
pixels and 1 output.) We will use gradient descent to train the two layer
networks in the greedy algorithm. A convenient matrix form for the gradient
of the two layer network is given in Problem 7.7. For the unsupervised auto-
encoder the target output is the input matrix X. for the supervised deep
network, the target output is just the target vector y. We used the supervised
approach with 1,000,000 gradient descent iterations for each supervised greedy
step using a sample of 1500 examples from the digits data. Here is a look at
what the 6 hidden units in the first hidden layer learned. For each hidden
node in the first hidden layer, we show the pixels corresponding to the top 20
incoming weights.

φ1 φ2 φ3 φ4 φ5 φ6

c© AM
L Abu-Mostafa, Magdon-Ismail, Lin: Jan-2015 e-Chap:7–41

So have we solved image classification?

NO!

The datasets we we looked at were just too easy.

Small images where the digit was centered.

As the images become larger, they have more and more
parameters.

11 11

Dalmatian

http://www.image-net.org/

The invariance problem

Our perceptual systems are very good at dealing with
invariances
  translation, rotation, scaling
  deformation, contrast, lighting, rate

We are so good at this that it’s hard to appreciate how difficult
it is.
  It’s one of the main difficulties in making computers perceive.

Image from https://grey.colorado.edu/CompCogNeuro/index.php/CCNBook/Perception

How to make a classifier invariant

Introduce transformed variants of the data – with sufficient
training data the network can learn the invariances by itself.

Alternatives:
v  Construct features that have the required invariances
v  Build the invariances into the model

13

The human visual system

The human visual system performs image processing at
increasing levels of abstraction

14 Image from https://grey.colorado.edu/CompCogNeuro/index.php/CCNBook/Perception

Let’s try to imitate what the brain does

When using ANNs to classify images, researchers have
proposed architectures that are motivated by the working of
the visual system.

15
http://www.scholarpedia.org/article/Neocognitron

The architecture of the Neocognitron (Fukushima, 1980)

Convolutional networks

The LeNet-5 network:

Important ideas:
Local features that are useful in one region are likely to be
useful elsewhere (weight sharing)
Extract local features (local receptive fields) and merge them
later to create global features at a more abstract level

16

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, november 1998.

http://yann.lecun.com/exdb/lenet/

Convolution

17
Image from http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/

Move a 3x3 receptive field over an image, extracting local
features at each position

1 0 1	
0 1 0	
1 0 1	

The matrix associated
with the receptive field
(feature extractor):

Pooling

Once local features are computed using convolution, they are
merged by pooling: combining all the convolved values into a
much smaller set (usually just a maximum).

18
Image from http://ufldl.stanford.edu/tutorial/supervised/Pooling/

Pooling

Pooling is a way of achieving invariance.

19
Image from http://ufldl.stanford.edu/tutorial/supervised/Pooling/

Convolutional networks

Let’s put all the elements together:

Can have multiple convolution/pooling layers
and multiple classification layers

20

input
layer

hidden
layer

output
layer

encoding decoding

auto-encoder

receptive
fields

convolutional
layer

pooling
layer

convolutional
network

classification
layer

Training convolutional networks

Guess what: backpropagation.

Need to modify the equations to model convolution/pooling

21

input
layer

hidden
layer

output
layer

encoding decoding

auto-encoder

receptive
fields

convolutional
layer

pooling
layer

convolutional
network

classification
layer

Convolutional networks

CNNs can be applied to variable-sized inputs

Provide state-of-the-art performance in several domains:

v  Object recognition in images (ImageNet)
v  Natural language processing
v  Speech processing

Issues: require lots of training data for good performance.

22

Auto-encoders

A framework for learning features in an unsupervised manner.
The idea: reconstruct the input using features computed by the
hidden layer.

Want to learn a function h such that:
The reconstruction error:

23

input
layer

hidden
layer

output
layer

encoding decoding

auto-encoder

receptive
fields

convolutional
layer

pooling
layer

convolutional
network

classification
layer

en = ||x̂n � xn||2
hw(x) ⇡ x

Auto-encoders

When trained effectively, auto-encoders learn interesting
features that characterize the input

At the end, use the encoding function as features for
supervised learning.

24

input
layer

hidden
layer

output
layer

encoding decoding

auto-encoder

receptive
fields

convolutional
layer

pooling
layer

convolutional
network

classification
layer

Features learned by an auto-encoder

Auto-encoders

When trained effectively, auto-encoders learn interesting
features that characterize the input

Since there are less neurons in the hidden layer, the network is
forced to learn a compressed version of the input.

25

input
layer

hidden
layer

output
layer

encoding decoding

auto-encoder

receptive
fields

convolutional
layer

pooling
layer

convolutional
network

classification
layer

Auto-encoders

When trained effectively, auto-encoders learn interesting
features that characterize the input

Can also achieve that by adding a sparsity-inducing penalty to
the neural network error function.

26

input
layer

hidden
layer

output
layer

encoding decoding

auto-encoder

receptive
fields

convolutional
layer

pooling
layer

convolutional
network

classification
layer

Auto-encoders and CNNs

The ideas of auto-encoders and convolutional networks can be
combined: convolutional auto-encoders

27

Masci, Jonathan, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber.
"Stacked convolutional auto-encoders for hierarchical feature extraction."
In Artificial Neural Networks and Machine Learning–ICANN 2011, pp. 52-59, 2011.

Makhzani, Alireza, and Brendan Frey. "A Winner-Take-All Method for Training Sparse
Convolutional Autoencoders.” Accepted, NIPS 2015.

(a) MNIST, 10% (b) MNIST, 5% (c) MNIST, 2%

Figure 1: Learnt dictionary (decoder) of FC-WTA with 1000 hidden units trained on MNIST

Sparse coding algorithms typically comprise two steps: a highly non-linear sparse encoding oper-
ation that finds the “right” atoms in the dictionary, and a linear decoding stage that reconstructs
the input with the selected atoms and update the dictionary. The FC-WTA autoencoder is a non-
symmetric autoencoder where the encoding stage is typically a stack of several ReLU layers and
the decoder is just a linear layer. In the feedforward phase, after computing the hidden codes of
the last layer of the encoder, rather than reconstructing the input from all of the hidden units, for
each hidden unit, we impose a lifetime sparsity by keeping the k percent largest activation of that
hidden unit across the mini-batch samples and setting the rest of activations of that hidden unit to
zero. In the backpropagation phase, we only backpropagate the error through the k percent non-zero
activations. In other words, we are using the min-batch statistics to approximate the statistics of
the activation of a particular hidden unit across all the samples, and finding a hard threshold value
for which we can achieve k% lifetime sparsity rate. In this setting, the highly nonlinear encoder of
the network (ReLUs followed by top-k sparsity) learns to do sparse encoding, and the decoder of
the network reconstructs the input linearly. At test time, we turn off the sparsity constraint and the
output of the deep ReLU network will be the final representation of the input. In order to train a
stacked FC-WTA autoencoder, we fix the weights and train another FC-WTA autoencoder on top of
the fixed representation of the previous network.

The learnt dictionary of a FC-WTA autoencoder trained on MNIST, CIFAR-10 and Toronto Face
datasets are visualized in Fig. 1 and Fig 2. For large sparsity levels, the algorithm tends to learn
very local features that are too primitive to be used for classification (Fig. 1a). As we decrease
the sparsity level, the network learns more useful features (longer digit strokes) and achieves better
classification (Fig. 1b). Nevertheless, forcing too much sparsity results in features that are too global
and do not factor the input into parts (Fig. 1c). Section 4.1 reports the classification results.

Winner-Take-All RBMs. Besides autoencoders, WTA activations can also be used in Restricted
BoltzmannMachines (RBM) to learn sparse representations. Supposeh and v denote the hidden and
visible units of RBMs. For training WTA-RBMs, in the positive phase of the contrastive divergence,
instead of sampling from P (hi|v), we first keep the k% largest P (hi|v) for each hi across the
mini-batch dimension and set the rest of P (hi|v) values to zero, and then sample hi according to
the sparsified P (hi|v). Filters of a WTA-RBM trained on MNIST are visualized in Fig. 3. We
can see WTA-RBMs learn longer digit strokes on MNIST, which as will be shown in Section 4.1,
improves the classification rate. Note that the sparsity rate of WTA-RBMs (e.g., 30%) should not be
as aggressive as WTA autoencoders (e.g., 5%), since RBMs are already being regularized by having
binary hidden states.

(a) Toronto Face Dataset (48× 48) (b) CIFAR-10 Patches (11× 11)

Figure 2: Dictionaries (decoder) of FC-WTA autoencoder with 256 hidden units and sparsity of 5%

2

Deep networks in practice

Deep networks are computationally expensive to train

GPUs to the rescue:

They were designed to speed up the computations performed in
video games: conversion of a 3-d specification to what should
be displayed on the screen.
They handle simple computations without much branching and
process large memory buffers in parallel: exactly what’s needed
for deep networks!

NVIDIA: general purpose GPUs - C-like programming using
CUDA. But still not easy to program.

28

Deep networks in practice

Alternative to GPUs: parallelism using asynchronous stochastic
gradient descent

29 http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent

http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks

Deep network software

Theano.
A python library that is the basis of many current deep network
packages (Pylearn2, keras, opendeep). From their website:

v  allows you to define, optimize, and evaluate mathematical

expressions involving multi-dimensional arrays efficiently.
v  tight integration with numpy
v  transparent use of a GPU
v  efficient symbolic differentiation – Theano does your

derivatives for function with one or many inputs.
v  dynamic C code generation

30

http://deeplearning.net/software/theano/

Deep Learning Resources

See:
http://deeplearning.net

31

