
Neural Networks 
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Neural networks 

Artificial neural networks:  computational models inspired by 
the brain 
Properties: 
v  Highly interconnected 
v  Distributed computation/memory 
v  Robust to noise, failures 
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The perceptron as a neural network 

Interpreting the perceptron as a single-layer neural network 
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e-7. Neural Networks 7.1. The Multi-layer Perceptron (MLP)

The two inputs h1h2 and h1h2 are ands. As such, they can be simulated by
the output of two and perceptrons. To deal with negation of the inputs to
the and, we negate the weights multiplying the negated inputs (as you have
done in Exercise 7.1(c)). The resulting graph representation of f is:
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The blue and red weights are simulating the required two ands. Finally, since
h1 = sign(wt

1x) and h2 = sign(wt

2x) are perceptrons, we further expand the
h1 and h2 nodes to obtain the graph representation of f .
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The next exercise asks you to compute an explicit algebraic formula for f .
The visual graph representation is much neater and easier to generalize.

Exercise 7.3

Use the graph representation to get an explicit formula for f and show that:

f(x) = sign
[

sign(h1(x)− h2(x)− 3
2 )− sign(h1(x)− h2(x) + 3

2 ) +
3
2

]

,

where h1(x) = sign(wt

1x) and h2(x) = sign(wt
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Let’s compare the graph form of f with
the graph form of the simple perceptron,
shown to the right. More layers of nodes
are used between the input and output
to implement f , as compared to the sim-
ple perceptron, hence we call it a multi-
layer layer perceptron (MLP),. The ad-
ditional layers are called hidden layers.
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Towards the multi-layer perceptron (MLP) 

Consider the following dataset: 
 
 
 
 
 
 
 
 
 
 
 
 
It’s clearly not linearly separable! 

4 

xor: A Limitation of the Linear Model
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Towards the multi-layer perceptron 

It can be addressed using a combination of multiple linear 
classifiers: 
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Decomposing xor
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h1(x) = sign(wt

1x) h2(x) = sign(wt

2x)
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The multi-layer perceptron 

A graph representation of the combined classifier: 
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e-7. Neural Networks 7.1. The Multi-layer Perceptron (MLP)

The two inputs h1h2 and h1h2 are ands. As such, they can be simulated by
the output of two and perceptrons. To deal with negation of the inputs to
the and, we negate the weights multiplying the negated inputs (as you have
done in Exercise 7.1(c)). The resulting graph representation of f is:
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The blue and red weights are simulating the required two ands. Finally, since
h1 = sign(wt
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The next exercise asks you to compute an explicit algebraic formula for f .
The visual graph representation is much neater and easier to generalize.

Exercise 7.3

Use the graph representation to get an explicit formula for f and show that:

f(x) = sign
[

sign(h1(x)− h2(x)− 3
2 )− sign(h1(x)− h2(x) + 3

2 ) +
3
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Let’s compare the graph form of f with
the graph form of the simple perceptron,
shown to the right. More layers of nodes
are used between the input and output
to implement f , as compared to the sim-
ple perceptron, hence we call it a multi-
layer layer perceptron (MLP),. The ad-
ditional layers are called hidden layers.
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The multi-layer perceptron 

A graph representation of the combined classifier: 
 
 
 
 
 
 
 
 
 
 
More layers provide the flexibility required to represent the 
target function 
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e-7. Neural Networks 7.1. The Multi-layer Perceptron (MLP)

The two inputs h1h2 and h1h2 are ands. As such, they can be simulated by
the output of two and perceptrons. To deal with negation of the inputs to
the and, we negate the weights multiplying the negated inputs (as you have
done in Exercise 7.1(c)). The resulting graph representation of f is:
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The next exercise asks you to compute an explicit algebraic formula for f .
The visual graph representation is much neater and easier to generalize.

Exercise 7.3

Use the graph representation to get an explicit formula for f and show that:

f(x) = sign
[
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Let’s compare the graph form of f with
the graph form of the simple perceptron,
shown to the right. More layers of nodes
are used between the input and output
to implement f , as compared to the sim-
ple perceptron, hence we call it a multi-
layer layer perceptron (MLP),. The ad-
ditional layers are called hidden layers.
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The multi-layer perceptron 

Given enough hidden neurons, it is possible to approximate 
arbitrary functions using this framework. 
 
 
 
 
 
 
 
 
The problem:  fitting the data is a combinatorial optimization 
problem (Ein is not a smooth function due to the sign function). 
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e-7. Neural Networks 7.1. The Multi-layer Perceptron (MLP)

Notice that the layers feed forward into the next layer only (there are no back-
ward pointing arrows and no jumps to other layers). The input (leftmost)
layer is not counted as a layer, so in this example, there are 3 layers (2 hid-
den layers with 3 nodes each, and an output layer with 1 node). The simple
perceptron has no hidden layers, just an input and output. The addition of
hidden layers is what allowed us to implement the more complicated target.

Exercise 7.4

For the target function in Exercise 7.1, give the MLP in graphical form, as
well as the explicit algebraic form.

If f can be decomposed into perceptrons using an or of ands, then it can be
implemented by a 3-layer perceptron. If f is not strictly decomposable into
perceptrons, but the decision boundary is smooth, then a 3-layer perceptron
can come arbitrarily close to implementing f . A ‘proof by picture’ illustration
for a disc target function follows:
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Target 8 perceptrons 16 perceptrons

The formal proof is somewhat analogous to the theorem in calculus which says
that any continuous function on a compact set can be approximated arbitrarily
closely using step functions. The perceptron is the analog of the step function.

We have thus found a generalization of the simple perceptron that looks
much like the simple perceptron itself, except for the addition of more layers.
We gained the ability to model more complex target functions by adding more
nodes (hidden units) in the hidden layers – this corresponds to allowing more
perceptrons in the decomposition of f . In fact, a suitably large 3-layer MLP
can closely approximate just about any target function, and fit any data set,
so it is a very powerful learning model. Use it with care. If your MLP is too
large you may lose generalization ability.

Once you fix the size of the MLP (number of hidden layers and number
of hidden units in each layer), you learn the weights on every link (arrow) by
fitting the data. Let’s consider the simple perceptron,

h(x) = θ(wtx).
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The multi-layer perceptron 

The problem:  fitting the data is a combinatorial optimization 
problem (Ein is not a smooth function due to the sign function). 
 
Solution:  replace the sign function with a sigmoid function 
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e-7. Neural Networks 7.1. The Multi-layer Perceptron (MLP)

When θ(s) = sign(s), learning the weights was already a hard combinatorial
problem and had a variety of algorithms, including the pocket algorithm, for
fitting data (Chapter 3). The combinatorial optimization problem is even
harder with the MLP, for the same reason, namely that the sign(·) function is
not smooth; a smooth, differentiable approximation to sign(·) will allow us to
use analytic methods, rather than purely combinatorial methods, to find the
optimal weights. We therefore approximate, or ‘soften’ the sign(·) function by
using the tanh(·) function. The MLP is sometimes called a (hard) threshold
neural network because the transformation function is a hard threshold at zero.

linear

sign

tanh

Here, we choose θ(x) = tanh(x) which is in-
between linear and the hard threshold: nearly
linear for x ≈ 0 and nearly ±1 for |x| large. The
tanh(·) function is another example of a sigmoid
(because its shape looks like a flattened out ‘s’),
related to the sigmoid we used for logistic regres-
sion.2 Such networks are called sigmoidal neu-
ral networks. Just as we could use the weights
learned from linear regression for classification, we could use weights learned
using the sigmoidal neural network with tanh(·) activation function for classi-
fication by replacing the output activation function with sign(·).

Exercise 7.5

Given w1 and ε > 0, find w2 such that |sign(wt

1xn)− tanh(wt

2xn)| ≤ ε
for xn ∈ D. [Hint: For large enough α, sign(x) ≈ tanh(αx).]

w

E
in

sign
tanh

The previous example shows that the
sign(·) function can be closely approxi-
mated by the tanh(·) function. A concrete
illustration of this is shown in the figure
to the right. The figure shows how the
in-sample error Ein varies with one of the
weights in w on an example problem for
the perceptron (blue curve) as compared
to the sigmoidal version (red curve). The
sigmoidal approximation captures the gen-
eral shape of the error, so that if we minimize the sigmoidal in-sample error,
we get a good approximation to minimizing the in-sample classification error.

2In logistic regression, we used the sigmoid because we wanted a probability as the output.
Here, we use the ‘soft’ tanh(·) because we want a friendly objective function to optimize.
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Feed forward neural networks 

The architecture for a feed-forward neural network: 
 
 
 
 
 
 
 
 
 
This network has three layers of neurons and weights (we don’t 
count the input layer). 

10 

e
-C

H
A
P
T
E
R

e-7. Neural Networks 7.2. Neural Networks

7.2 Neural Networks

The neural network is our ‘softened’ MLP. Let’s begin with a graph represen-
tation of a feed-forward neural network (the only kind we will consider).

input layer ! = 0

1 1

h(x)

... s

θ(s)

θ

θ

θ

θ

θ

θ

1

x1

x2

xd

output layer ! = Lhidden layers 0 < ! < L

The graph representation depicts a function in our hypothesis set. While this
graphical view is aesthetic and intuitive, with information ‘flowing’ from the
inputs on the far left, along links and through hidden nodes, ultimately to the
output h(x) on the far right, it will be necessary to algorithmically describe
the function being computed. Things are going to get messy, and this calls for
a very systematic notation; bear with us.

7.2.1 Notation

There are layers labeled by ! = 0, 1, 2, . . . , L. In our example above, L = 3, i.e.
we have three layers (the input layer ! = 0 is usually not considered a layer
and is meant for feeding in the inputs). The layer ! = L is the output layer,
which determines the value of the function. The layers in between, 0 < ! < L,
are the hidden layers. We will use superscript(!) to refer to a particular layer.
Each layer ! has ‘dimension’ d(!), which means that it has d(!) + 1 nodes,
labeled 0, 1, . . . , d(!). Every layer has one special node, which is called the bias
node (labeled 0). This bias node is set to have an output 1, which is analogous
to the fictitious x0 = 1 convention that we had for linear models.

Every arrow represents a weight or connection strength from a node in a
layer to a node in the next higher layer. Notice that the bias nodes have no
incoming weights. There are no other connection weights.3 A node with an
incoming weight indicates that some signal is fed into this node. Every such
node with an input has a transformation function θ. If θ(s) = sign(s), then we
have the MLP for classification. As we mentioned before, we will be using a soft
version of the MLP with θ(x) = tanh(x) to approximate the sign(·) function.
The tanh(·) is a soft threshold or sigmoid, and we already saw a related sigmoid

3In a more general setting, weights can connect any two nodes, in addition to going
backward (i.e., one can have cycles). Such networks are called recurrent neural networks,
and we do not consider them here.
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Anatomy of a neuron 

Let’s look more closely at a pair of neurons 
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when we discussed logistic regression in Chapter 3. Ultimately, when we do
classification, we replace the output sigmoid by the hard threshold sign(·).
As a comment, if we were doing regression instead, our entire discussion goes
through with the output transformation being replaced by the identity function
(no transformation) so that the output is a real number. If we were doing
logistic regression, we would replace the output tanh(·) sigmoid by the logistic
regression sigmoid.

The neural network model Hnn is specified once you determine the ar-
chitecture of the neural network, that is the dimension of each layer d =
[d(0), d(1), . . . , d(L)] (L is the number of layers). A hypothesis h ∈ Hnn is
specified by selecting weights for the links. Let’s zoom into a node in hidden
layer !, to see what weights need to be specified.

layer (!− 1) layer !

x
(!)
j

i

w
(!)
ij

x
(!−1)
i

s
(!)
j

j

A node has an incoming signal s and an output x. The weights on links into
the node from the previous layer are w(!), so the weights are indexed by the
layer into which they go. Thus, the output of the nodes in layer ! − 1 is
multiplied by weights w(!). We use subscripts to index the nodes in a layer.

So, w(!)
ij is the weight into node j in layer ! from node i in the previous layer,

the signal going into node j in layer ! is s(!)j , and the output of this node

is x(!)
j . There are some special nodes in the network. The zero nodes in every

layer are constant nodes, set to output 1. They have no incoming weight, but
they have an outgoing weight. The nodes in the input layer ! = 0 are for the
input values, and have no incoming weight or transformation function.

For the most part, we only need to deal with the network on a layer by layer
basis, so we introduce vector and matrix notation for that. We collect all the
input signals to nodes 1, . . . , d(!) in layer ! in the vector s(!). Similarly, collect

the output from nodes 0, . . . , d(!) in the vector x(!); note that x(!) ∈ {1}×Rd(!)

because of the bias node 0. There are links connecting the outputs of all
nodes in the previous layer to the inputs of layer !. So, into layer !, we have

a (d(!−1) + 1) × d(!) matrix of weights W(!). The (i, j)-entry of W(!) is w(!)
ij

going from node i in the previous layer to node j in layer !.
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Zooming into a Hidden Node

input layer ! = 0

1 1

h(x)

... s

θ(s)
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θ
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xd

output layer ! = Lhidden layers 0 < ! < L

+ θ

θ

layer (!− 1) layer !

layer (!+ 1)

s(!) x(!)
W(!)

W(!+1)

layer ! parameters

signals in s(!) d(!) dimensional input vector

outputs x(!) d(!) + 1 dimensional output vector

weights in W(!) (d(!−1) + 1)× d(!) dimensional matrix

weights out W(!+1) (d(!) + 1)× d(!+1) dimensional matrix

layers ! = 0, 1, 2, . . . , L
layer ! has “dimension” d(!) =⇒ d(!) + 1 nodes

W(!) =









w(!)
1 w(!)

2 · · · w(!)

d(!)

...








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Anatomy of a neuron 

The interconnections of layer l: 
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Zooming into a Hidden Node

input layer ! = 0

1 1

h(x)

... s

θ(s)

θ

θ

θ

θ

θ

θ

1

x1

x2

xd

output layer ! = Lhidden layers 0 < ! < L

+ θ

θ

layer (!− 1) layer !

layer (!+ 1)

s(!) x(!)
W(!)

W(!+1)
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signals in s(!) d(!) dimensional input vector

outputs x(!) d(!) + 1 dimensional output vector

weights in W(!) (d(!−1) + 1)× d(!) dimensional matrix

weights out W(!+1) (d(!) + 1)× d(!+1) dimensional matrix
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+ θ

θ

layer ("− 1) layer "

s(!) x(!)

W(!)

W(!+1)

layer ("+ 1)

layer ! parameters

signals in s(!) d(!) dimensional input vector

outputs x(!) d(!) + 1 dimensional output vector

weights in W(!) (d(!−1) + 1)× d(!) dimensional matrix

weights out W(!+1) (d(!) + 1)× d(!+1) dimensional matrix

After you fix the weights W(!) for ! = 1, . . . , L, you have specified a particular
neural network hypothesis h ∈ Hnn. We collect all these weight matrices into
a single weight parameter w = {W(1),W(2), . . . ,W(L)}, and sometimes we will
write h(x;w) to explicitly indicate the dependence of the hypothesis on w.

7.2.2 Forward Propagation

The neural network hypothesis h(x) is computed by the forward propagation
algorithm. First observe that the inputs and outputs of a layer are related by
the transformation function,

x(!) =

[

1
θ(s(!))

]

. (7.1)

where θ(s(!)) is a vector whose components are θ(s(!)j ). To get the input vector
into layer !, we compute the weighted sum of the outputs from the previous

layer, with weights specified in W(!): s(!)j =
∑d(!−1)

i=0 w(!)
ij x(!−1)

i . This process
is compactly represented by the matrix equation

s(!) = (W(!))tx(!−1). (7.2)

All that remains is to initialize the input layer to x(0) = x (so d(0) = d, the
input dimension)4 and use Equations (7.2) and (7.1) in the following chain,

x = x(0) W(1)

−→ s(1)
θ−→ x(1) W(2)

−→ s(2)
θ−→ x(2) · · · −→ s(L) θ−→ x(L) = h(x).

4Recall that the input vectors are also augmented with x0 = 1.
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Forward propagation 

a 
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Zooming into a Hidden Node
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W(!+1)

layer ! parameters

signals in s(!) d(!) dimensional input vector

outputs x(!) d(!) + 1 dimensional output vector

weights in W(!) (d(!−1) + 1)× d(!) dimensional matrix

weights out W(!+1) (d(!) + 1)× d(!+1) dimensional matrix

layers ! = 0, 1, 2, . . . , L
layer ! has “dimension” d(!) =⇒ d(!) + 1 nodes

W(!) =








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2 · · · w(!)

d(!)

...








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The Linear Signal

Input s(!) is a linear combination (using weights) of the
outputs of the previous layer x(!−1).

s(!) = (W(!))tx(!−1)
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(recall the linear signal s = wtx)
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−−−−−−→ x(!)
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The Linear Signal

Input s(!) is a linear combination (using weights) of the
outputs of the previous layer x(!−1).

s(!) = (W(!))tx(!−1)
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(recall the linear signal s = wtx)
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+ θ

θ

layer ("− 1) layer "

s(!) x(!)

W(!)

W(!+1)

layer ("+ 1)

layer ! parameters

signals in s(!) d(!) dimensional input vector

outputs x(!) d(!) + 1 dimensional output vector

weights in W(!) (d(!−1) + 1)× d(!) dimensional matrix

weights out W(!+1) (d(!) + 1)× d(!+1) dimensional matrix

After you fix the weights W(!) for ! = 1, . . . , L, you have specified a particular
neural network hypothesis h ∈ Hnn. We collect all these weight matrices into
a single weight parameter w = {W(1),W(2), . . . ,W(L)}, and sometimes we will
write h(x;w) to explicitly indicate the dependence of the hypothesis on w.

7.2.2 Forward Propagation

The neural network hypothesis h(x) is computed by the forward propagation
algorithm. First observe that the inputs and outputs of a layer are related by
the transformation function,

x(!) =

[

1
θ(s(!))

]

. (7.1)

where θ(s(!)) is a vector whose components are θ(s(!)j ). To get the input vector
into layer !, we compute the weighted sum of the outputs from the previous

layer, with weights specified in W(!): s(!)j =
∑d(!−1)

i=0 w(!)
ij x(!−1)

i . This process
is compactly represented by the matrix equation

s(!) = (W(!))tx(!−1). (7.2)

All that remains is to initialize the input layer to x(0) = x (so d(0) = d, the
input dimension)4 and use Equations (7.2) and (7.1) in the following chain,

x = x(0) W(1)

−→ s(1)
θ−→ x(1) W(2)

−→ s(2)
θ−→ x(2) · · · −→ s(L) θ−→ x(L) = h(x).

4Recall that the input vectors are also augmented with x0 = 1.

c© AM
L Abu-Mostafa, Magdon-Ismail, Lin: Jan-2015 e-Chap:7–9

e
-C

H
A
P
T
E
R

e-7. Neural Networks 7.2. Neural Networks

Forward propagation to compute h(x):

1: x(0) ← x [Initialization]
2: for ! = 1 to L [Forward Propagation]do

3: s(!) ← (W(!))tx(!−1)

4: x(!) ←
[

1
θ(s(!))

]

5: h(x) = x(L) [Output]

x(!)

θ(·)

θ(·)

x(!−1)

W(!)

+

+

s(!)
...

layer "layer ("− 1)

11

...

After forward propagation, the output vector x(!) at every layer l = 0, . . . , L
has been computed.

Exercise 7.6

Let V and Q be the number of nodes and weights in the neural network,

V =
L∑

!=0

d(!), Q =
L∑

!=1

d(!)(d(!−1) + 1).

In terms of V and Q, how many computations are made in forward propa-
gation (additions, multiplications and evaluations of θ).

[Answer: O(Q) multiplications and additions, and O(V ) θ-evaluations.]

If we want to compute Ein, all we need is h(xn) and yn. For the sum of
squares,

Ein(w) =
1

N

N
∑

n=1

(h(xn;w)− yn)
2

=
1

N

N
∑

n=1

(x(L)
n − yn)

2.
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+ θ

θ

layer ("− 1) layer "

s(!) x(!)

W(!)

W(!+1)

layer ("+ 1)

layer ! parameters

signals in s(!) d(!) dimensional input vector

outputs x(!) d(!) + 1 dimensional output vector

weights in W(!) (d(!−1) + 1)× d(!) dimensional matrix

weights out W(!+1) (d(!) + 1)× d(!+1) dimensional matrix

After you fix the weights W(!) for ! = 1, . . . , L, you have specified a particular
neural network hypothesis h ∈ Hnn. We collect all these weight matrices into
a single weight parameter w = {W(1),W(2), . . . ,W(L)}, and sometimes we will
write h(x;w) to explicitly indicate the dependence of the hypothesis on w.

7.2.2 Forward Propagation

The neural network hypothesis h(x) is computed by the forward propagation
algorithm. First observe that the inputs and outputs of a layer are related by
the transformation function,

x(!) =

[

1
θ(s(!))

]

. (7.1)

where θ(s(!)) is a vector whose components are θ(s(!)j ). To get the input vector
into layer !, we compute the weighted sum of the outputs from the previous

layer, with weights specified in W(!): s(!)j =
∑d(!−1)

i=0 w(!)
ij x(!−1)

i . This process
is compactly represented by the matrix equation

s(!) = (W(!))tx(!−1). (7.2)

All that remains is to initialize the input layer to x(0) = x (so d(0) = d, the
input dimension)4 and use Equations (7.2) and (7.1) in the following chain,

x = x(0) W(1)

−→ s(1)
θ−→ x(1) W(2)

−→ s(2)
θ−→ x(2) · · · −→ s(L) θ−→ x(L) = h(x).

4Recall that the input vectors are also augmented with x0 = 1.
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Forward propagation to compute h(x):

1: x(0) ← x [Initialization]
2: for ! = 1 to L [Forward Propagation]do

3: s(!) ← (W(!))tx(!−1)

4: x(!) ←
[

1
θ(s(!))

]

5: h(x) = x(L) [Output]

x(!)

θ(·)

θ(·)

x(!−1)

W(!)

+

+

s(!)
...

layer "layer ("− 1)

11

...

After forward propagation, the output vector x(!) at every layer l = 0, . . . , L
has been computed.

Exercise 7.6

Let V and Q be the number of nodes and weights in the neural network,

V =
L∑

!=0

d(!), Q =
L∑

!=1

d(!)(d(!−1) + 1).

In terms of V and Q, how many computations are made in forward propa-
gation (additions, multiplications and evaluations of θ).

[Answer: O(Q) multiplications and additions, and O(V ) θ-evaluations.]

If we want to compute Ein, all we need is h(xn) and yn. For the sum of
squares,

Ein(w) =
1

N

N
∑

n=1

(h(xn;w)− yn)
2

=
1

N

N
∑

n=1

(x(L)
n − yn)

2.

c© AM
L Abu-Mostafa, Magdon-Ismail, Lin: Jan-2015 e-Chap:7–10

e
-C

H
A
P
T
E
R

e-7. Neural Networks 7.2. Neural Networks

Forward propagation to compute h(x):

1: x(0) ← x [Initialization]
2: for ! = 1 to L [Forward Propagation]do

3: s(!) ← (W(!))tx(!−1)

4: x(!) ←
[

1
θ(s(!))

]

5: h(x) = x(L) [Output]

x(!)

θ(·)

θ(·)

x(!−1)

W(!)

+

+

s(!)
...

layer "layer ("− 1)

11

...

After forward propagation, the output vector x(!) at every layer l = 0, . . . , L
has been computed.

Exercise 7.6

Let V and Q be the number of nodes and weights in the neural network,

V =
L∑

!=0

d(!), Q =
L∑

!=1

d(!)(d(!−1) + 1).

In terms of V and Q, how many computations are made in forward propa-
gation (additions, multiplications and evaluations of θ).

[Answer: O(Q) multiplications and additions, and O(V ) θ-evaluations.]

If we want to compute Ein, all we need is h(xn) and yn. For the sum of
squares,

Ein(w) =
1

N

N
∑

n=1

(h(xn;w)− yn)
2

=
1

N

N
∑

n=1

(x(L)
n − yn)

2.
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Minimizing the in-sample error 

Computing the hypothesis h(x): 
 
 
Now we are ready to compute the in-sample error: 
 
 
 
 
 
If we use a smooth sigmoid function, it is differentiable, and we 
can use gradient descent. 
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+ θ

θ

layer ("− 1) layer "

s(!) x(!)

W(!)

W(!+1)

layer ("+ 1)

layer ! parameters

signals in s(!) d(!) dimensional input vector

outputs x(!) d(!) + 1 dimensional output vector

weights in W(!) (d(!−1) + 1)× d(!) dimensional matrix

weights out W(!+1) (d(!) + 1)× d(!+1) dimensional matrix

After you fix the weights W(!) for ! = 1, . . . , L, you have specified a particular
neural network hypothesis h ∈ Hnn. We collect all these weight matrices into
a single weight parameter w = {W(1),W(2), . . . ,W(L)}, and sometimes we will
write h(x;w) to explicitly indicate the dependence of the hypothesis on w.

7.2.2 Forward Propagation

The neural network hypothesis h(x) is computed by the forward propagation
algorithm. First observe that the inputs and outputs of a layer are related by
the transformation function,

x(!) =

[

1
θ(s(!))

]

. (7.1)

where θ(s(!)) is a vector whose components are θ(s(!)j ). To get the input vector
into layer !, we compute the weighted sum of the outputs from the previous

layer, with weights specified in W(!): s(!)j =
∑d(!−1)

i=0 w(!)
ij x(!−1)

i . This process
is compactly represented by the matrix equation

s(!) = (W(!))tx(!−1). (7.2)

All that remains is to initialize the input layer to x(0) = x (so d(0) = d, the
input dimension)4 and use Equations (7.2) and (7.1) in the following chain,

x = x(0) W(1)

−→ s(1)
θ−→ x(1) W(2)

−→ s(2)
θ−→ x(2) · · · −→ s(L) θ−→ x(L) = h(x).

4Recall that the input vectors are also augmented with x0 = 1.
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Forward propagation to compute h(x):

1: x(0) ← x [Initialization]
2: for ! = 1 to L [Forward Propagation]do

3: s(!) ← (W(!))tx(!−1)

4: x(!) ←
[

1
θ(s(!))

]

5: h(x) = x(L) [Output]

x(!)

θ(·)

θ(·)

x(!−1)

W(!)

+

+

s(!)
...

layer "layer ("− 1)

11

...

After forward propagation, the output vector x(!) at every layer l = 0, . . . , L
has been computed.

Exercise 7.6

Let V and Q be the number of nodes and weights in the neural network,

V =
L∑

!=0

d(!), Q =
L∑

!=1

d(!)(d(!−1) + 1).

In terms of V and Q, how many computations are made in forward propa-
gation (additions, multiplications and evaluations of θ).

[Answer: O(Q) multiplications and additions, and O(V ) θ-evaluations.]

If we want to compute Ein, all we need is h(xn) and yn. For the sum of
squares,

Ein(w) =
1

N

N
∑

n=1

(h(xn;w)− yn)
2

=
1

N

N
∑

n=1

(x(L)
n − yn)

2.
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We now discuss how to minimize Ein to obtain the learned weights. It will be a
direct application of gradient descent, with a special algorithm that computes
the gradient efficiently.

7.2.3 Backpropagation Algorithm

We studied an algorithm for getting to a local minimum of a smooth in-sample
error surface in Chapter 3, namely gradient descent: initialize the weights to
w(0) and for t = 1, 2, . . . update the weights by taking a step in the negative
gradient direction,

w(t+ 1) = w(t) − η∇Ein(w(t))

we called this (batch) gradient descent. To implement gradient descent, we
need the gradient.

Exercise 7.7

For the sigmoidal perceptron, h(x) = tanh(wtx), let the in-sample error
be Ein(w) = 1

N

∑N
n=1(tanh(w

txn)− yn)
2. Show that

∇Ein(w) =
2
N

N∑

n=1

(tanh(wtxn)− yn)(1− tanh2(wtxn))xn.

If w → ∞, what happens to the gradient; how this is related to why it is
hard to optimize the perceptron.

We now consider the sigmoidal multi-layer neural network with θ(x) = tanh(x).
Since h(x) is smooth, we can apply gradient descent to the resulting error func-
tion. To do so, we need the gradient∇Ein(w). Recall that the weight vector w
contains all the weight matrices W(1), . . . ,W(L), and we need the derivatives
with respect to all these weights. Unlike the sigmoidal perceptron in Exer-
cise 7.7, for the multilayer sigmoidal network there is no simple closed form
expression for the gradient. Consider an in-sample error which is the sum of
the point-wise errors over the data points (as is the squared in-sample error),

Ein(w) =
1

N

N
∑

n=1

en.

where en = e(h(xn), yn). For the squared error, e(h, y) = (h − y)2. To
compute the gradient of Ein, we need its derivative with respective to each
weight matrix:

∂Ein

∂W(!)
=

1

N

N
∑

n=1

∂en
∂W(!)

, (7.3)

The basic building block in (7.3) is the partial derivative of the error on a
data point e, with respect to the W(!). A quick and dirty way to get ∂e

∂W(!) is
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Minimizing the in-sample error 

Let’s express the in-sample error as: 
 
 
 
where: 
 
And for the squared error 
 
We need the derivative with respect to each weight matrix: 
 
 
 
So we need  
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We now discuss how to minimize Ein to obtain the learned weights. It will be a
direct application of gradient descent, with a special algorithm that computes
the gradient efficiently.

7.2.3 Backpropagation Algorithm

We studied an algorithm for getting to a local minimum of a smooth in-sample
error surface in Chapter 3, namely gradient descent: initialize the weights to
w(0) and for t = 1, 2, . . . update the weights by taking a step in the negative
gradient direction,

w(t+ 1) = w(t) − η∇Ein(w(t))

we called this (batch) gradient descent. To implement gradient descent, we
need the gradient.

Exercise 7.7

For the sigmoidal perceptron, h(x) = tanh(wtx), let the in-sample error
be Ein(w) = 1

N

∑N
n=1(tanh(w

txn)− yn)
2. Show that

∇Ein(w) =
2
N

N∑

n=1

(tanh(wtxn)− yn)(1− tanh2(wtxn))xn.

If w → ∞, what happens to the gradient; how this is related to why it is
hard to optimize the perceptron.

We now consider the sigmoidal multi-layer neural network with θ(x) = tanh(x).
Since h(x) is smooth, we can apply gradient descent to the resulting error func-
tion. To do so, we need the gradient∇Ein(w). Recall that the weight vector w
contains all the weight matrices W(1), . . . ,W(L), and we need the derivatives
with respect to all these weights. Unlike the sigmoidal perceptron in Exer-
cise 7.7, for the multilayer sigmoidal network there is no simple closed form
expression for the gradient. Consider an in-sample error which is the sum of
the point-wise errors over the data points (as is the squared in-sample error),

Ein(w) =
1

N

N
∑

n=1

en.

where en = e(h(xn), yn). For the squared error, e(h, y) = (h − y)2. To
compute the gradient of Ein, we need its derivative with respective to each
weight matrix:

∂Ein

∂W(!)
=

1

N

N
∑

n=1

∂en
∂W(!)

, (7.3)

The basic building block in (7.3) is the partial derivative of the error on a
data point e, with respect to the W(!). A quick and dirty way to get ∂e

∂W(!) is
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We now discuss how to minimize Ein to obtain the learned weights. It will be a
direct application of gradient descent, with a special algorithm that computes
the gradient efficiently.

7.2.3 Backpropagation Algorithm

We studied an algorithm for getting to a local minimum of a smooth in-sample
error surface in Chapter 3, namely gradient descent: initialize the weights to
w(0) and for t = 1, 2, . . . update the weights by taking a step in the negative
gradient direction,

w(t+ 1) = w(t) − η∇Ein(w(t))

we called this (batch) gradient descent. To implement gradient descent, we
need the gradient.

Exercise 7.7

For the sigmoidal perceptron, h(x) = tanh(wtx), let the in-sample error
be Ein(w) = 1

N

∑N
n=1(tanh(w

txn)− yn)
2. Show that

∇Ein(w) =
2
N

N∑

n=1

(tanh(wtxn)− yn)(1− tanh2(wtxn))xn.

If w → ∞, what happens to the gradient; how this is related to why it is
hard to optimize the perceptron.

We now consider the sigmoidal multi-layer neural network with θ(x) = tanh(x).
Since h(x) is smooth, we can apply gradient descent to the resulting error func-
tion. To do so, we need the gradient∇Ein(w). Recall that the weight vector w
contains all the weight matrices W(1), . . . ,W(L), and we need the derivatives
with respect to all these weights. Unlike the sigmoidal perceptron in Exer-
cise 7.7, for the multilayer sigmoidal network there is no simple closed form
expression for the gradient. Consider an in-sample error which is the sum of
the point-wise errors over the data points (as is the squared in-sample error),

Ein(w) =
1

N

N
∑

n=1

en.

where en = e(h(xn), yn). For the squared error, e(h, y) = (h − y)2. To
compute the gradient of Ein, we need its derivative with respective to each
weight matrix:

∂Ein

∂W(!)
=

1

N

N
∑

n=1

∂en
∂W(!)

, (7.3)

The basic building block in (7.3) is the partial derivative of the error on a
data point e, with respect to the W(!). A quick and dirty way to get ∂e

∂W(!) is
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We now discuss how to minimize Ein to obtain the learned weights. It will be a
direct application of gradient descent, with a special algorithm that computes
the gradient efficiently.

7.2.3 Backpropagation Algorithm

We studied an algorithm for getting to a local minimum of a smooth in-sample
error surface in Chapter 3, namely gradient descent: initialize the weights to
w(0) and for t = 1, 2, . . . update the weights by taking a step in the negative
gradient direction,

w(t+ 1) = w(t) − η∇Ein(w(t))

we called this (batch) gradient descent. To implement gradient descent, we
need the gradient.

Exercise 7.7

For the sigmoidal perceptron, h(x) = tanh(wtx), let the in-sample error
be Ein(w) = 1

N

∑N
n=1(tanh(w

txn)− yn)
2. Show that

∇Ein(w) =
2
N

N∑

n=1

(tanh(wtxn)− yn)(1− tanh2(wtxn))xn.

If w → ∞, what happens to the gradient; how this is related to why it is
hard to optimize the perceptron.

We now consider the sigmoidal multi-layer neural network with θ(x) = tanh(x).
Since h(x) is smooth, we can apply gradient descent to the resulting error func-
tion. To do so, we need the gradient∇Ein(w). Recall that the weight vector w
contains all the weight matrices W(1), . . . ,W(L), and we need the derivatives
with respect to all these weights. Unlike the sigmoidal perceptron in Exer-
cise 7.7, for the multilayer sigmoidal network there is no simple closed form
expression for the gradient. Consider an in-sample error which is the sum of
the point-wise errors over the data points (as is the squared in-sample error),

Ein(w) =
1

N

N
∑

n=1

en.

where en = e(h(xn), yn). For the squared error, e(h, y) = (h − y)2. To
compute the gradient of Ein, we need its derivative with respective to each
weight matrix:

∂Ein

∂W(!)
=

1

N

N
∑

n=1

∂en
∂W(!)

, (7.3)

The basic building block in (7.3) is the partial derivative of the error on a
data point e, with respect to the W(!). A quick and dirty way to get ∂e

∂W(!) is
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We now discuss how to minimize Ein to obtain the learned weights. It will be a
direct application of gradient descent, with a special algorithm that computes
the gradient efficiently.

7.2.3 Backpropagation Algorithm

We studied an algorithm for getting to a local minimum of a smooth in-sample
error surface in Chapter 3, namely gradient descent: initialize the weights to
w(0) and for t = 1, 2, . . . update the weights by taking a step in the negative
gradient direction,

w(t+ 1) = w(t) − η∇Ein(w(t))

we called this (batch) gradient descent. To implement gradient descent, we
need the gradient.

Exercise 7.7

For the sigmoidal perceptron, h(x) = tanh(wtx), let the in-sample error
be Ein(w) = 1

N

∑N
n=1(tanh(w

txn)− yn)
2. Show that

∇Ein(w) =
2
N

N∑

n=1

(tanh(wtxn)− yn)(1− tanh2(wtxn))xn.

If w → ∞, what happens to the gradient; how this is related to why it is
hard to optimize the perceptron.

We now consider the sigmoidal multi-layer neural network with θ(x) = tanh(x).
Since h(x) is smooth, we can apply gradient descent to the resulting error func-
tion. To do so, we need the gradient∇Ein(w). Recall that the weight vector w
contains all the weight matrices W(1), . . . ,W(L), and we need the derivatives
with respect to all these weights. Unlike the sigmoidal perceptron in Exer-
cise 7.7, for the multilayer sigmoidal network there is no simple closed form
expression for the gradient. Consider an in-sample error which is the sum of
the point-wise errors over the data points (as is the squared in-sample error),

Ein(w) =
1

N

N
∑

n=1

en.

where en = e(h(xn), yn). For the squared error, e(h, y) = (h − y)2. To
compute the gradient of Ein, we need its derivative with respective to each
weight matrix:

∂Ein

∂W(!)
=

1

N

N
∑

n=1

∂en
∂W(!)

, (7.3)

The basic building block in (7.3) is the partial derivative of the error on a
data point e, with respect to the W(!). A quick and dirty way to get ∂e

∂W(!) is
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Gradient of Ein

Ein(w) =
1

N

N
∑

n=1

e(h(xn), yn)
↙

en

∂Ein(w)

∂W(")
=

1

N

N
∑

n=1

∂en
∂W(")

We need
∂e(x)

∂W(")
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Digression:  the chain rule 

We need to take the derivative 
 
However, the error is not a direct function of the weights. 
 
 
To find it, first let’s consider a 
simpler case: 
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Gradient of Ein

Ein(w) =
1

N

N
∑

n=1

e(h(xn), yn)
↙

en

∂Ein(w)

∂W(")
=

1

N

N
∑

n=1

∂en
∂W(")

We need
∂e(x)

∂W(")
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7.2 Neural Networks

The neural network is our ‘softened’ MLP. Let’s begin with a graph represen-
tation of a feed-forward neural network (the only kind we will consider).

input layer ! = 0

1 1

h(x)

... s

θ(s)

θ

θ

θ

θ

θ

θ

1

x1

x2

xd

output layer ! = Lhidden layers 0 < ! < L

The graph representation depicts a function in our hypothesis set. While this
graphical view is aesthetic and intuitive, with information ‘flowing’ from the
inputs on the far left, along links and through hidden nodes, ultimately to the
output h(x) on the far right, it will be necessary to algorithmically describe
the function being computed. Things are going to get messy, and this calls for
a very systematic notation; bear with us.

7.2.1 Notation

There are layers labeled by ! = 0, 1, 2, . . . , L. In our example above, L = 3, i.e.
we have three layers (the input layer ! = 0 is usually not considered a layer
and is meant for feeding in the inputs). The layer ! = L is the output layer,
which determines the value of the function. The layers in between, 0 < ! < L,
are the hidden layers. We will use superscript(!) to refer to a particular layer.
Each layer ! has ‘dimension’ d(!), which means that it has d(!) + 1 nodes,
labeled 0, 1, . . . , d(!). Every layer has one special node, which is called the bias
node (labeled 0). This bias node is set to have an output 1, which is analogous
to the fictitious x0 = 1 convention that we had for linear models.

Every arrow represents a weight or connection strength from a node in a
layer to a node in the next higher layer. Notice that the bias nodes have no
incoming weights. There are no other connection weights.3 A node with an
incoming weight indicates that some signal is fed into this node. Every such
node with an input has a transformation function θ. If θ(s) = sign(s), then we
have the MLP for classification. As we mentioned before, we will be using a soft
version of the MLP with θ(x) = tanh(x) to approximate the sign(·) function.
The tanh(·) is a soft threshold or sigmoid, and we already saw a related sigmoid

3In a more general setting, weights can connect any two nodes, in addition to going
backward (i.e., one can have cycles). Such networks are called recurrent neural networks,
and we do not consider them here.
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6.4.1 Chain Rule

The basic mathematical tool for considering derivatives through compositions of

functions is the chain rule, illustrated in Figure 6.4. The partial derivative
∂y
∂x

measures the locally linear influence of a variable x on another one y, while we

denote ∇ θJ for the gradient vector of a scalar J with respect to some vector of

variables θ. If x influences y which influences z, we are interested in how a tiny

change in x propagates into a tiny change in z via a tiny change in y. In our case

of interest, the “output” is the cost, or objective function z = J(g(θ)), we want

the gradient with respect to some parameters x = θ, and there are intermediate

quantities y = g(θ) such as neural net activations. The gradient of interest can

then be decomposed, according to the chain rule, into

∇ θJ(g(θ)) = ∇g(θ)J(g(θ))
∂g(θ)

∂θ
(6.12)

which works also when J, g or θ are vectors rather than scalars (in which case

the corresponding partial derivatives are understood as Jacobian matrices of the

appropriate dimensions). In the purely scalar case we can understand the chain

rule as follows: a small change in θ will propagate into a small change in g(θ) by

getting multiplied by
∂g(θ)
∂θ . Similarly, a small change in g(θ) will propagate into

a small change in J (g(θ)) by getting multiplied by ∇g(θ)J(g(θ)). Hence a small

change in θ first gets multiplied by
∂g(θ)
∂θ to obtain the change in g(θ) and this

then gets multiplied by ∇g(θ)J(g(θ)) to obtain the change in J(g(θ)). Hence the

ratio of the change in J (g(θ)) to the change in θ is the product of these partial

derivatives.

Figure 6.4: The chain rule, illustrated in the simplest possible case, with z a scalar

function of y, which is itself a scalar function of x. A small change ∆x in x gets turned

into a small change ∆y in y through the partial derivative
∂y
∂x , from the first-order Taylor

approximation of y(x), and similarly for z(y). Plugging the equation for ∆y into the

equation for ∆z yields the chain rule.

Now, if g is a vector, we can rewrite the above as follows:

∇θJ(g(θ)) =

Xi

∂J (g(θ))

∂gi(θ)

∂g i(θ)

∂θ
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Example:  the perceptron 

In the case of a perceptron with a single neuron and tanh 
activation function: 
 
 
 
 
 
 
What happens when components of w are large? 
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We now discuss how to minimize Ein to obtain the learned weights. It will be a
direct application of gradient descent, with a special algorithm that computes
the gradient efficiently.

7.2.3 Backpropagation Algorithm

We studied an algorithm for getting to a local minimum of a smooth in-sample
error surface in Chapter 3, namely gradient descent: initialize the weights to
w(0) and for t = 1, 2, . . . update the weights by taking a step in the negative
gradient direction,

w(t+ 1) = w(t) − η∇Ein(w(t))

we called this (batch) gradient descent. To implement gradient descent, we
need the gradient.

Exercise 7.7

For the sigmoidal perceptron, h(x) = tanh(wtx), let the in-sample error
be Ein(w) = 1

N

∑N
n=1(tanh(w

txn)− yn)
2. Show that

∇Ein(w) =
2
N

N∑

n=1

(tanh(wtxn)− yn)(1− tanh2(wtxn))xn.

If w → ∞, what happens to the gradient; how this is related to why it is
hard to optimize the perceptron.

We now consider the sigmoidal multi-layer neural network with θ(x) = tanh(x).
Since h(x) is smooth, we can apply gradient descent to the resulting error func-
tion. To do so, we need the gradient∇Ein(w). Recall that the weight vector w
contains all the weight matrices W(1), . . . ,W(L), and we need the derivatives
with respect to all these weights. Unlike the sigmoidal perceptron in Exer-
cise 7.7, for the multilayer sigmoidal network there is no simple closed form
expression for the gradient. Consider an in-sample error which is the sum of
the point-wise errors over the data points (as is the squared in-sample error),

Ein(w) =
1

N

N
∑

n=1

en.

where en = e(h(xn), yn). For the squared error, e(h, y) = (h − y)2. To
compute the gradient of Ein, we need its derivative with respective to each
weight matrix:

∂Ein

∂W(!)
=

1

N

N
∑

n=1

∂en
∂W(!)

, (7.3)

The basic building block in (7.3) is the partial derivative of the error on a
data point e, with respect to the W(!). A quick and dirty way to get ∂e

∂W(!) is
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Example:  the perceptron 

In the case of a perceptron with a single neuron and tanh 
activation function: 
 
 
 
 
 
 
For multi-layer architectures there is no closed form expression 
for the gradient 
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We now discuss how to minimize Ein to obtain the learned weights. It will be a
direct application of gradient descent, with a special algorithm that computes
the gradient efficiently.

7.2.3 Backpropagation Algorithm

We studied an algorithm for getting to a local minimum of a smooth in-sample
error surface in Chapter 3, namely gradient descent: initialize the weights to
w(0) and for t = 1, 2, . . . update the weights by taking a step in the negative
gradient direction,

w(t+ 1) = w(t) − η∇Ein(w(t))

we called this (batch) gradient descent. To implement gradient descent, we
need the gradient.

Exercise 7.7

For the sigmoidal perceptron, h(x) = tanh(wtx), let the in-sample error
be Ein(w) = 1

N

∑N
n=1(tanh(w

txn)− yn)
2. Show that

∇Ein(w) =
2
N

N∑

n=1

(tanh(wtxn)− yn)(1− tanh2(wtxn))xn.

If w → ∞, what happens to the gradient; how this is related to why it is
hard to optimize the perceptron.

We now consider the sigmoidal multi-layer neural network with θ(x) = tanh(x).
Since h(x) is smooth, we can apply gradient descent to the resulting error func-
tion. To do so, we need the gradient∇Ein(w). Recall that the weight vector w
contains all the weight matrices W(1), . . . ,W(L), and we need the derivatives
with respect to all these weights. Unlike the sigmoidal perceptron in Exer-
cise 7.7, for the multilayer sigmoidal network there is no simple closed form
expression for the gradient. Consider an in-sample error which is the sum of
the point-wise errors over the data points (as is the squared in-sample error),

Ein(w) =
1

N

N
∑

n=1

en.

where en = e(h(xn), yn). For the squared error, e(h, y) = (h − y)2. To
compute the gradient of Ein, we need its derivative with respective to each
weight matrix:

∂Ein

∂W(!)
=

1

N

N
∑

n=1

∂en
∂W(!)

, (7.3)

The basic building block in (7.3) is the partial derivative of the error on a
data point e, with respect to the W(!). A quick and dirty way to get ∂e

∂W(!) is
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Digression:  the chain rule 

When there are multiple intermediate variables we need to sum 
the influence of each one: 
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Figure 6.5: Top: The chain rule, when there are two intermediate variables y 1 and y2
between x and z, creating two paths for changes in x to propagate and yield changes in
z. Bottom: more general case, with n intermediate variables y 1 to yn.

which sums over the influences of θ on J(g(θ)) through all the intermediate
variables g i(θ). This is illustrated in Figure 6.5 with x = θ, y i = gi(θ), and

z = J(g(θ)).

6.4.2 Back-Propagation in an MLP

Example 6.1.1 illustrated the case of an MLP with a single hidden layer. In this
section we extend back-propagation to a deep MLP. This MLP is the same as
before, but with multiple hidden layers rather than a single hidden layer. For this
purpose, we will recursively apply the chain rule illustrated in Figure 6.5. The
algorithm proceeds by first computing the gradient of the cost J with respect to

output units, and these are used to compute the gradient of J with respect to the
top hidden layer activations, which directly influence the outputs. We can then

177



Computing the gradient 

 
 
 
Therefore we can express the gradient of the error as: 
 
 
 
 
 
where 
 
 
is the sensitivity vector for layer l 
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Algorithmic Approach

e(x) is a function of s(!) and s(!) = (W(!))tx(!−1)

∂e

∂W(!)
=

∂s(!)

∂W(!)
·

(

∂e

∂s(!)

)

t

(chain rule)

= x(!−1)(δ(!))t

sensitivity

δ
(!) =

∂e

∂s(!)

c© AML Creator: Malik Magdon-Ismail Neural Networks: Backpropagation: 10 /14 δ(!) and the chain rule −→
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e(x) is a function of s(!) and s(!) = (W(!))tx(!−1)

∂e

∂W(!)
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∂s(!)
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to use the numerical finite difference approach. The complexity of obtaining
the partial derivatives with respect to every weight is O(Q2), where Q is the
number of weights (see Problem 7.6). From (7.3), we have to compute these
derivatives for every data point, so the numerical approach is computation-
ally prohibitive. We now derive an elegant dynamic programming algorithm
known as backpropagation.5 Backpropagation allows us to compute the partial
derivatives with respect to every weight efficiently, using O(Q) computation.
We describe backpropagation for getting the partial derivative of the error e,
but the algorithm is general and can be used to get the partial derivative of
any function of the output h(x) with respect to the weights.

Backpropagation is based on several applications of the chain rule to write
partial derivatives in layer ! using partial derivatives in layer (! + 1). To
describe the algorithm, we define the sensitivity vector for layer !, which is
the sensitivity (gradient) of the error e with respect to the input signal s(!)

that goes into layer !. We denote the sensitivity by δ(!),

δ(!) =
∂e

∂s(!)
.

The sensitivity quantifies how e changes with s(!). Using the sensitivity, we
can write the partial derivatives with respect to the weights W(!) as

∂e

∂W(!)
= x(!−1)(δ(!))t. (7.4)

We will derive this formula later, but for now let’s examine it closely. The
partial derivatives on the left form a matrix with dimensions (d(!−1)+1)×d(!)

and the ‘outer product’ of the two vectors on the right give exactly such a ma-
trix. The partial derivatives have contributions from two components. (i) The
output vector of the layer from which the weights originate; the larger the
output, the more sensitive e is to the weights in the layer. (ii) The sensitivity
vector of the layer into which the weights go; the larger the sensitivity vector,
the more sensitive e is to the weights in that layer.

The outputs x(!) for every layer ! ≥ 0 can be computed by a forward
propagation. So to get the partial derivatives, it suffices to obtain the sen-
sitivity vectors δ(!) for every layer ! ≥ 1 (remember that there is no input
signal to layer ! = 0). It turns out that the sensitivity vectors can be obtained
by running a slightly modified version of the neural network backwards, and
hence the name backpropagation. In forward propagation, each layer outputs
the vector x(!) and in backpropagation, each layer outputs (backwards) the
vector δ(!). In forward propagation, we compute x(!) from x(!−1) and in back-
propagation, we compute δ(!) from δ(!+1). The basic idea is illustrated in the
following figure.

5Dynamic programming is an elegant algorithmic technique in which one builds up a
solution to a complex problem using the solutions to related but simpler problems.
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Backpropagation 

Computing the sensitivities: 
 
 
 
(since e depends on s(l) only through x(l)) 
 
 
 
(because a change in component j of x(l) affects every component 
of s(l+1)) 

22 

e
-C

H
A
P
T
E
R

e-7. Neural Networks 7.2. Neural Networks

Let’s derive (7.4) and (7.5), which are the core equations of backpropagation.
There’s nothing to it but repeated application of the chain rule. If you wish
to trust our math, you won’t miss much by moving on.

Begin safe skip: If you trust our math, you can skip
this part without compromising the logical sequence.
A similar green box will tell you when to rejoin.

To begin, let’s take a closer look at the partial derivative, ∂e/∂W(!). The
situation is illustrated in Figure 7.1.

W(!) s(!) x(!)

+
W(!+1)

e = (x(L) − y)2
x(!−1)

layer (!+ 1)layer !layer (!− 1)

θ θ

θ

· · ·

Figure 7.1: Chain of dependencies from W(!) to x(L).

We can identify the following chain of dependencies by which W(!) influences
the output x(L), and hence the error e.

W(!) −→ s(!) −→ x(!) −→ s(!+1) · · · −→ x(L) = h.

To derive (7.4), we drill down to a single weight and use the chain rule. For a

single weight w(!)
ij , a change in w(!)

ij only affects s
(!)
j and so by the chain rule,

∂e

∂w(!)
ij

=
∂s(!)j

∂w(!)
ij

· ∂e

∂s(!)j

= x
(!−1)
i · δ(!)j ,

where the last equality follows because s
(!)
j =

∑d(!−1)

α=0 w(!)
αj x

(!−1)
α and by defi-

nition of δ(!)j . We have derived the component form of (7.4).

We now derive the component form of (7.5). Since e depends on s(!) only
through x(!) (see Figure 7.1), by the chain rule, we have:

δ
(!)
j =

∂e

∂s(!)j

=
∂e

∂x(!)
j

·
∂x(!)

j

∂s(!)j

= θ′
(

s
(!)
j

)

· ∂e

∂x(!)
j

.

To get the partial derivative ∂e/∂x(!), we need to understand how e changes
due to changes in x(!). Again, from Figure 7.1, a change in x(!) only affects
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s(!+1) and hence e. Because a particular component of x(!) can affect every
component of s(!+1), we need to sum these dependencies using the chain rule:

∂e

∂x(!)
j

=
d(!+1)
∑

k=1

∂s(!+1)
k

∂x(!)
j

· ∂e

∂s(!+1)
k

=
d(!+1)
∑

k=1

w(!+1)
jk δ

(!+1)
k .

Putting all this together, we have arrived at the component version of (7.5)

δ
(!)
j = θ′(s(!)j )

d(!+1)
∑

k=1

w(!+1)
jk δ

(!+1)
k , (7.6)

Intuitively, the first term comes from the impact of s(!) on x(!); the summation
is the impact of x(!) on s(!+1), and the impact of s(!+1) on h is what gives us
back the sensitivities in layer (#+ 1), resulting in the backward recursion.

End safe skip: Those who skipped are now rejoining
us to discuss how backpropagation gives us ∇Ein.

Backpropagation works with a data point (x, y) and weights w = {W(1), . . . ,W(L)}.
Since we run one forward and backward propagation to compute the outputs
x(!) and the sensitivities δ(!), the running time is order of the number of
weights in the network. We compute once for each data point (xn, yn) to
get ∇Ein(xn) and, using the sum in (7.3), we aggregate these single point
gradients to get the full batch gradient ∇Ein. We summarize the algorithm
below.

Algorithm to Compute Ein(w) and g = ∇Ein(w).
Input: w = {W(1), . . . ,W(L)}; D = (x1, y1) . . . (xN , yn).
Output: error Ein(w) and gradient g = {G(1), . . . ,G(L)}.
1: Initialize: Ein = 0 and G(!) = 0 ·W(!) for # = 1, . . . , L.
2: for Each data point (xn, yn), n = 1, . . . , N , do
3: Compute x(!) for # = 0, . . . , L. [forward propagation]
4: Compute δ(!) for # = L, . . . , 1. [backpropagation]
5: Ein ← Ein + 1

N (x(L) − yn)2.
6: for # = 1, . . . , L do
7: G(!)(xn) = [x(!−1)(δ(!))t]
8: G(!) ← G(!) + 1

NG(!)(xn)

(G(!)(xn) is the gradient on data point xn). The weight update for a single
iteration of fixed learning rate gradient descent is W(!) ← W(!) − ηG(!), for
# = 1, . . . , L. We do all this for one iteration of gradient descent, a costly
computation for just one little step.
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Let’s derive (7.4) and (7.5), which are the core equations of backpropagation.
There’s nothing to it but repeated application of the chain rule. If you wish
to trust our math, you won’t miss much by moving on.

Begin safe skip: If you trust our math, you can skip
this part without compromising the logical sequence.
A similar green box will tell you when to rejoin.

To begin, let’s take a closer look at the partial derivative, ∂e/∂W(!). The
situation is illustrated in Figure 7.1.

W(!) s(!) x(!)

+
W(!+1)

e = (x(L) − y)2
x(!−1)

layer (!+ 1)layer !layer (!− 1)

θ θ

θ

· · ·

Figure 7.1: Chain of dependencies from W(!) to x(L).

We can identify the following chain of dependencies by which W(!) influences
the output x(L), and hence the error e.

W(!) −→ s(!) −→ x(!) −→ s(!+1) · · · −→ x(L) = h.

To derive (7.4), we drill down to a single weight and use the chain rule. For a

single weight w(!)
ij , a change in w(!)

ij only affects s
(!)
j and so by the chain rule,

∂e

∂w(!)
ij

=
∂s(!)j

∂w(!)
ij

· ∂e

∂s(!)j

= x
(!−1)
i · δ(!)j ,

where the last equality follows because s
(!)
j =

∑d(!−1)

α=0 w(!)
αj x

(!−1)
α and by defi-

nition of δ(!)j . We have derived the component form of (7.4).

We now derive the component form of (7.5). Since e depends on s(!) only
through x(!) (see Figure 7.1), by the chain rule, we have:

δ
(!)
j =

∂e

∂s(!)j

=
∂e

∂x(!)
j

·
∂x(!)

j

∂s(!)j

= θ′
(

s
(!)
j

)

· ∂e

∂x(!)
j

.

To get the partial derivative ∂e/∂x(!), we need to understand how e changes
due to changes in x(!). Again, from Figure 7.1, a change in x(!) only affects
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Backpropagation 

We can compute the gradient by “backpropagating” the 
sensitivity vectors: 
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δ(!)

+

+× θ′(s(!))

... W(!+1)
δ(!+1)

...

layer " layer ("+ 1)

1 1

As you can see in the figure, the neural network is slightly modified only in
that we have changed the transformation function for the nodes. In forward
propagation, the transformation was the sigmoid θ(·). In backpropagation,
the transformation is multiplication by θ′(s(!)), where s(!) is the input to the
node. So the transformation function is now different for each node, and
it depends on the input to the node, which depends on x. This input was
computed in the forward propagation. For the tanh(·) transformation function,
tanh′(s(!)) = 1−tanh2(s(!)) = 1−x(!)⊗x(!), where ⊗ denotes component-wise
multiplication.

In the figure, layer ("+1) outputs (backwards) the sensitivity vector δ(!+1),
which gets multiplied by the weights W(!+1), summed and passed into the
nodes in layer ". Nodes in layer " multiply by θ′(s(!)) to get δ(!). Using ⊗, a
shorthand notation for this backpropagation step is:

δ(!) = θ′(s(!))⊗ [W(!+1)δ(!+1)
]d(!)

1
, (7.5)

where the vector
[

W(!+1)δ(!+1)
]d(!)

1
contains components 1, . . . , d(!) of the vec-

tor W(!+1)δ(!+1) (excluding the bias component which has index 0). This for-
mula is not surprising. The sensitivity of e to inputs of layer " is proportional
to the slope of the activation function in layer " (bigger slope means a small
change in s(!) will have a larger effect on x(!)), the size of the weights going
out of the layer (bigger weights mean a small change in s(!) will have more
impact on s(!+1)) and the sensitivity in the next layer (a change in layer "
affects the inputs to layer "+ 1, so if e is more sensitive to layer "+ 1, then it
will also be more sensitive to layer ").

We will derive this backward recursion later. For now, observe that if we
know δ(!+1), then you can get δ(!). We use δ(L) to seed the backward process,
and we can get that explicitly because e = (x(L) − y)2 = (θ(s(L)) − y)2.
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s(!+1) and hence e. Because a particular component of x(!) can affect every
component of s(!+1), we need to sum these dependencies using the chain rule:

∂e

∂x(!)
j

=
d(!+1)
∑

k=1

∂s(!+1)
k

∂x(!)
j

· ∂e

∂s(!+1)
k

=
d(!+1)
∑

k=1

w(!+1)
jk δ

(!+1)
k .

Putting all this together, we have arrived at the component version of (7.5)

δ
(!)
j = θ′(s(!)j )

d(!+1)
∑

k=1

w(!+1)
jk δ

(!+1)
k , (7.6)

Intuitively, the first term comes from the impact of s(!) on x(!); the summation
is the impact of x(!) on s(!+1), and the impact of s(!+1) on h is what gives us
back the sensitivities in layer (#+ 1), resulting in the backward recursion.

End safe skip: Those who skipped are now rejoining
us to discuss how backpropagation gives us ∇Ein.

Backpropagation works with a data point (x, y) and weights w = {W(1), . . . ,W(L)}.
Since we run one forward and backward propagation to compute the outputs
x(!) and the sensitivities δ(!), the running time is order of the number of
weights in the network. We compute once for each data point (xn, yn) to
get ∇Ein(xn) and, using the sum in (7.3), we aggregate these single point
gradients to get the full batch gradient ∇Ein. We summarize the algorithm
below.

Algorithm to Compute Ein(w) and g = ∇Ein(w).
Input: w = {W(1), . . . ,W(L)}; D = (x1, y1) . . . (xN , yn).
Output: error Ein(w) and gradient g = {G(1), . . . ,G(L)}.
1: Initialize: Ein = 0 and G(!) = 0 ·W(!) for # = 1, . . . , L.
2: for Each data point (xn, yn), n = 1, . . . , N , do
3: Compute x(!) for # = 0, . . . , L. [forward propagation]
4: Compute δ(!) for # = L, . . . , 1. [backpropagation]
5: Ein ← Ein + 1

N (x(L) − yn)2.
6: for # = 1, . . . , L do
7: G(!)(xn) = [x(!−1)(δ(!))t]
8: G(!) ← G(!) + 1

NG(!)(xn)

(G(!)(xn) is the gradient on data point xn). The weight update for a single
iteration of fixed learning rate gradient descent is W(!) ← W(!) − ηG(!), for
# = 1, . . . , L. We do all this for one iteration of gradient descent, a costly
computation for just one little step.
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Computing δ(!) Using the Chain Rule

δ
(1) ←− δ

(2) · · · ←− δ
(L−1) ←− δ

(L)

Multiple applications of the chain rule:

∆s(!)
θ
−→ ∆x(!) W(!+1)

−→ ∆s(!+1) · · · −→ ∆e(x)

δ(!)

+

+× θ′(s(!))

... W(!+1)
δ(!+1)

...

layer ! layer (!+ 1)

1 1

don’t use 0th component (bias)
↓

δ
(!) = θ′(s(!))⊗ [W(!+1)

δ
(!+1)]d

(!)

1

↑

componentwise multiplication
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The Backpropagation Algorithm

δ
(1) ←− δ

(2) · · · ←− δ
(L−1) ←− δ

(L)

Backpropagation to compute sensitivities δ(!):
(Assume s(!) and x(!) have been computed for all !)

1: δ(L)← 2(x(L) − y) · θ′(s(L)) [Initialization]

2: for ! = L− 1 to 1 [Back-Propagation]do
3: Compute (for tanh hidden node):

θ′(s(!)) =
[

1− x(!) ⊗ x(!)
]d(!)

1

4: δ(!)← θ′(s(!))⊗
[

W(!+1)δ(!+1)
]d(!)

1
← componentwise multiplication

5: end for
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The Backpropagation Algorithm

δ
(1) ←− δ

(2) · · · ←− δ
(L−1) ←− δ

(L)

Backpropagation to compute sensitivities δ(!):
(Assume s(!) and x(!) have been computed for all !)

1: δ(L)← 2(x(L) − y) · θ′(s(L)) [Initialization]

2: for ! = L− 1 to 1 [Back-Propagation]do
3: Compute (for tanh hidden node):

θ′(s(!)) =
[

1− x(!) ⊗ x(!)
]d(!)

1

4: δ(!)← θ′(s(!))⊗
[

W(!+1)δ(!+1)
]d(!)

1
← componentwise multiplication

5: end for
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Algorithm for Gradient Descent on Ein

Algorithm to Compute Ein(w) and g = ∇Ein(w):
Input: weights w = {W(1), . . . ,W(L)}; data D.
Output: error Ein(w) and gradient g = {G(1), . . . ,G(L)}.

1: Initialize: Ein = 0; for ! = 1, . . . , L, G(!) = 0 ·W(!) .

2: for Each data point xn (n = 1, . . . , N) do
3: Compute x(!) for ! = 0, . . . , L. [forward propagation]

4: Compute δ(!) for ! = 1, . . . , L. [backpropagation]

5: Ein ← Ein +
1
N (x

(L)
1 − yn)2.

6: for ! = 1, . . . , L do
7: G(!)(xn) = [x(!−1)(δ(!))t]
8: G(!) ← G(!) + 1

NG
(!)(xn).

9: end for

10: end for

Can do batch version or sequential version (SGD).
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s(!+1) and hence e. Because a particular component of x(!) can affect every
component of s(!+1), we need to sum these dependencies using the chain rule:

∂e

∂x(!)
j

=
d(!+1)
∑

k=1

∂s(!+1)
k

∂x(!)
j

· ∂e

∂s(!+1)
k

=
d(!+1)
∑

k=1

w(!+1)
jk δ

(!+1)
k .

Putting all this together, we have arrived at the component version of (7.5)

δ
(!)
j = θ′(s(!)j )

d(!+1)
∑

k=1

w(!+1)
jk δ

(!+1)
k , (7.6)

Intuitively, the first term comes from the impact of s(!) on x(!); the summation
is the impact of x(!) on s(!+1), and the impact of s(!+1) on h is what gives us
back the sensitivities in layer (#+ 1), resulting in the backward recursion.

End safe skip: Those who skipped are now rejoining
us to discuss how backpropagation gives us ∇Ein.

Backpropagation works with a data point (x, y) and weights w = {W(1), . . . ,W(L)}.
Since we run one forward and backward propagation to compute the outputs
x(!) and the sensitivities δ(!), the running time is order of the number of
weights in the network. We compute once for each data point (xn, yn) to
get ∇Ein(xn) and, using the sum in (7.3), we aggregate these single point
gradients to get the full batch gradient ∇Ein. We summarize the algorithm
below.

Algorithm to Compute Ein(w) and g = ∇Ein(w).
Input: w = {W(1), . . . ,W(L)}; D = (x1, y1) . . . (xN , yn).
Output: error Ein(w) and gradient g = {G(1), . . . ,G(L)}.
1: Initialize: Ein = 0 and G(!) = 0 ·W(!) for # = 1, . . . , L.
2: for Each data point (xn, yn), n = 1, . . . , N , do
3: Compute x(!) for # = 0, . . . , L. [forward propagation]
4: Compute δ(!) for # = L, . . . , 1. [backpropagation]
5: Ein ← Ein + 1

N (x(L) − yn)2.
6: for # = 1, . . . , L do
7: G(!)(xn) = [x(!−1)(δ(!))t]
8: G(!) ← G(!) + 1

NG(!)(xn)

(G(!)(xn) is the gradient on data point xn). The weight update for a single
iteration of fixed learning rate gradient descent is W(!) ← W(!) − ηG(!), for
# = 1, . . . , L. We do all this for one iteration of gradient descent, a costly
computation for just one little step.
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Using the gradient for  
gradient descent: 



History of backpropagation 

The method was proposed independently several times: 
 
Rumelhart, David E.; Hinton, Geoffrey E., Williams, Ronald J. (8 
October 1986). "Learning representations by back-propagating 
errors". Nature 323 (6088): 533–536. 
 
Paul J. Werbos. Beyond Regression: New Tools for Prediction 
and Analysis in the Behavioral Sciences. PhD thesis, Harvard 
University, 1974 
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Batch vs stochastic update 

Stochastic gradient descent:  update the weight vector after 
the gradient with respect to a given training example has been 
computed. 
 
Batch gradient descent:  aggregate the gradients across all 
training examples before updating the weight vector. 
 
SGD is more effective: 
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SGD

Gradient Descent

log10(iteration)
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0
In Chapter 3, we discussed stochas-

tic gradient descent (SGD) as a more
efficient alternative to the batch mode.
Rather than wait for the aggregate gra-
dient G(!) at the end of the iteration, one
immediately updates the weights as each
data point is sequentially processed using
the single point gradient in step 7 of the
algorithm: W(!) = W(!) − ηG(!)(xn). In
this sequential version, you still run a for-
ward and backward propagation for each
data point, but make N updates to the weights. A comparison of batch gra-
dient descent with SGD is shown to the right. We used 500 training examples
from the digits data and a 2-layer neural network with 5 hidden units and
learning rate η = 0.01. The SGD curve is erratic because one is not minimiz-
ing the total error at each iteration, but the error on a specific data point.
One method to dampen this erratic behavior is to decrease the learning rate
as the minimization proceeds.

The speed at which you minimize Ein can depend heavily on the optimiza-
tion algorithm you use. SGD appears significantly better than plain vanilla
gradient descent, but we can do much better – even SGD is not very efficient.
In Section 7.5, we discuss some other powerful methods (for example, conju-
gate gradients) that can significantly improve upon gradient descent and SGD,
by making more effective use of the gradient.

Initialization and Termination. Choosing the initial weights and decid-
ing when to stop the gradient descent can be tricky, as compared with logistic
regression, because the in-sample error is not convex anymore. From Exer-
cise 7.7, if the weights are initialized too large so that tanh(wtxn) ≈ ±1,
then the gradient will be close to zero and the algorithm won’t get any-
where. This is especially a problem if you happen to initialize the weights
to the wrong sign. It is usually best to initialize the weights to small ran-
dom values where tanh(wtxn) ≈ 0 so that the algorithm has the flexibility to
move the weights easily to fit the data. One good choice is to initialize using
Gaussian random weights, wi ∼ N(0,σ2

w) where σ2
w is small. But how small

should σ2
w be? A simple heuristic is that we want |wtxn|2 to be small. Since

Ew

[

|wtxn|2
]

= σ2
w‖xn‖2, we should choose σ2

w so that σ2
w ·maxn ‖xn‖2 % 1.

Exercise 7.9

What can go wrong if you just initialize all the weights to exactly zero?
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Batch vs stochastic update 

Batch training is typically slower than stochastic. 
 
Why? 
 
Assume there are several duplicates of a given example. 
The update made from the duplicates is not contributing to 
convergence. 
 
In real data you will have examples that are correlated. 
 
There are methods for accelerating batch training (e.g. 
conjugate gradient method), and it’s easier to determine 
convergence. 
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Batch vs stochastic update 

Batch training is typically slower than stochastic. 
 
There are methods for accelerating batch training (e.g. 
conjugate gradient method), and it’s easier to determine 
convergence. 
 
Stochastic learning often leads to better local minima (the cost 
function is not monotonically decreasing, and can sometimes help 
escape to a basin of a deeper local minimum). 
 
Can smooth the progress of stochastic learning by processing 
examples in batches, and varying batch size and learning rate. 
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More tricks 

Neural networks benefit from the same types of normalization 
as other geometrical methods (SVMs/perceptron) 
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Activation functions 

f(x) = tanh(x)

Common activation functions: 

f(x) =

1

1 + exp(x)

Linear (useful for regression problems) 

Gaussian (aka radial basis function) 

Logistic 
function 



More tricks 

If the input is centered/standardized, it’s usually better to use 
a tanh activation function than the logistic function. 
 
Because we want to produce outputs that are centered around 0 
(the logistic function produces a positive output) 
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Online training 

Assume a situation where you have a huge dataset that you can’t 
store in memory. 
 
Solution:  Online training – cycle thru the dataset once, updating 
as in the stochastic version. 
 
Useful when data arrives as a “stream”. 
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Comments about backpropagation 

What can we say about the error surface? 
 
Can have multiple local minima.  Therefore backpropagation 
doesn’t necessarily finds the global minimum. 
 
Is this a problem?  Not necessarily. 
 
Compare to SVM which have a globally optimal solution, and 
typically faster training times. 
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Comments about backpropagation 

What can we say about the error surface? 
 
Can have multiple local minima.  Therefore backpropagation 
doesn’t necessarily finds the global minimum. 
 
Another issue:  plateaus – regions where the error is more or 
less constant 
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When do we stop? It is risky to rely solely on
the size of the gradient to stop. As illustrated on
the right, you might stop prematurely when the
iteration reaches a relatively flat region (which
is more common than you might suspect). A
combination of stopping criteria is best in prac-
tice, for example stopping only when there is
marginal error improvement coupled with small
error, plus an upper bound on the number of iterations.

7.2.4 Regression for Classification

In Chapter 3, we mentioned that you could use the weights resulting from
linear regression as perceptron weights for classification, and you can do the
same with neural networks. Specifically, fit the classification data (yn = ±1) as
though it were a regression problem. This means you use the identity function
as the output node transformation, instead of tanh(·). This can be a great
help because of the ‘flat regions’ which the network is susceptible to when
using gradient descent, which happens often in training. The reason for these
flat periods in the optimization is the exceptionally flat nature of the tanh
function when its argument gets large. If for whatever reason the weights get
large toward the beginning of the training, then the error surface begins to look
flat, because the tanh has been saturated. Now, gradient descent cannot make
any progress and you might think you are at a minimum, when in fact you
are far from a minimum. The problem of a flat error surface is considerably
mitigated when the output transformation is the identity because you can
recover from an initial bad move if it happens to take you to large weights
(the linear output never saturates). For a concrete example of a prematurely
flat in-sample error, see the figure in Example 7.2 on page 25.

7.3 Approximation versus Generalization

1

θ h

1

...

x1

x2

xd

θ

θ

θ

A large enough MLP with 2 hidden layers can
approximate smooth decision functions arbitrar-
ily well. It turns out that a single hidden layer
suffices.6 A neural network with a single hidden
layer having m hidden units (d(1) = m) imple-
ments a function of the form

h(x) = θ



w(2)
01 +

m
∑

j=1

w(2)
j1 θ

(
d
∑

i=0

w(1)
ij xi

)


 .

6Though one hidden layer is enough, it is not necessarily the most efficient way to fit the
data; for example a much smaller 2-hidden-layer network may exist.
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Comments about backpropagation 

Plateaus arise because of  
saturation of the activation  
function. 
 
How to avoid them? 
 
Initialize with small weights 
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the size of the gradient to stop. As illustrated on
the right, you might stop prematurely when the
iteration reaches a relatively flat region (which
is more common than you might suspect). A
combination of stopping criteria is best in prac-
tice, for example stopping only when there is
marginal error improvement coupled with small
error, plus an upper bound on the number of iterations.

7.2.4 Regression for Classification

In Chapter 3, we mentioned that you could use the weights resulting from
linear regression as perceptron weights for classification, and you can do the
same with neural networks. Specifically, fit the classification data (yn = ±1) as
though it were a regression problem. This means you use the identity function
as the output node transformation, instead of tanh(·). This can be a great
help because of the ‘flat regions’ which the network is susceptible to when
using gradient descent, which happens often in training. The reason for these
flat periods in the optimization is the exceptionally flat nature of the tanh
function when its argument gets large. If for whatever reason the weights get
large toward the beginning of the training, then the error surface begins to look
flat, because the tanh has been saturated. Now, gradient descent cannot make
any progress and you might think you are at a minimum, when in fact you
are far from a minimum. The problem of a flat error surface is considerably
mitigated when the output transformation is the identity because you can
recover from an initial bad move if it happens to take you to large weights
(the linear output never saturates). For a concrete example of a prematurely
flat in-sample error, see the figure in Example 7.2 on page 25.

7.3 Approximation versus Generalization
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A large enough MLP with 2 hidden layers can
approximate smooth decision functions arbitrar-
ily well. It turns out that a single hidden layer
suffices.6 A neural network with a single hidden
layer having m hidden units (d(1) = m) imple-
ments a function of the form
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6Though one hidden layer is enough, it is not necessarily the most efficient way to fit the
data; for example a much smaller 2-hidden-layer network may exist.
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Comments about backpropagation 

Plateaus arise because of  
saturation of the activation  
function. 
 
How to avoid them? 
 
Momentum! 

37 

36 CHAPTER 6. MULTILAYER NEURAL NETWORKS

of η ! 0.1 is often adequate as a first choice, and lowered if the criterion function
diverges, or raised if learning seems unduly slow.

6.8.10 Momentum

Error surfaces often have plateaus — regions in which the slope dJ(w)/dw is very
small — for instance because of “too many” weights. Momentum — loosely based
on the notion from physics that moving objects tend to keep moving unless acted
upon by outside forces — allows the network to learn more quickly when plateaus
in the error surface exist. The approach is to alter the learning rule in stochastic
backpropagation to include some fraction α of the previous weight update:

w(m + 1) = w(m) + ∆w(m)︸ ︷︷ ︸
gradient
descent

+α∆w(m− 1)︸ ︷︷ ︸
momentum

(36)

Of course, α must be less than 1.0 for stability; typical values are α ! 0.9. It must
be stressed that momentum rarely changes the final solution, but merely allows it to
be found more rapidly. Momentum provides another benefit: effectively “averaging
out” stochastic variations in weight updates during stochastic learning and thereby
speeding learning, even far from error plateaus (Fig. 6.20).

w1

J(w)

sto
chast

ic

w. m
omentum

Figure 6.20: The incorporation of momentum into stochastic gradient descent by
Eq. 36 (white arrows) reduces the variation in overall gradient directions and speeds
learning, especially over plateaus in the error surface.

Algorithm 3 shows one way to incorporate momentum into gradient descent.

Algorithm 3 (Stochastic backpropagation with momentum)

1 begin initialize topology (# hidden units),w, criterion,α(< 1), θ, η, m← 0, bji ← 0, bkj ← 0
2 do m← m + 1
3 xm ← randomly chosen pattern
4 bji ← ηδjxi + αbji; bkj ← ηδkyj + αbkj

5 wji ← wji + bji; wkj ← wkj + bkj

6 until ∇J(w) < θ



Comments about backpropagation 

 
Alternative: more sophisticated methods than gradient descent 
e.g. scaled conjugate gradient 
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Choosing a learning rate 

The choice of the learning rate depends on the shape of the 
error surface: 
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the efficiency of the optimization. The next figure shows two algorithms: our
old friend gradient descent and our soon-to-be friend conjugate gradient de-
scent. Both algorithms are minimizing Ein for a 5 hidden unit neural network
fitting 200 digits data. The performance difference is dramatic.

conjugate gradients

gradient descent

optimization time (sec)
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We now discuss methods for ‘beefing up’ gradient descent, but only scratch
the surface of this important topic known as numerical optimization. The two
main steps in an iterative optimization procedure are to determine:

1. Which direction should one search for a local optimum?

2. How large a step should one take in that direction?

7.5.1 Choosing the Learning Rate η

In gradient descent, the learning rate η multiplies the negative gradient to
give the move −η∇Ein. The size of the step taken is proportional to η. The
optimal step size (and hence learning rate η) depends on how wide or narrow
the error surface is near the minimum.

weights, w
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Ein(w)

weights, w
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E

in

Ein(w)

wide: use large η. narrow: use small η.

When the surface is wider, we can take larger steps without overshooting;
since ‖∇Ein‖ is small, we need a large η. Since we do not know ahead of time
how wide the surface is, it is easy to choose an inefficient value for η.
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Variable learning rate 

A simple heuristic:  if the error drops, increase, if it increases, 
reject the update and decrease 
 
 
 
 
 
 
 
 
 
 
 
Choosing the parameters: 
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Variable Learning Rate Gradient Descent

1: Initialize w(0), and η0 at t = 0. Set α > 1 and β < 1.

2: while stopping criterion has not been met do
3: Let g(t) = ∇Ein(w(t)), and set v(t) = −g(t).

4: if Ein(w(t) + ηtv(t)) < Ein(w(t)) then
5: accept: w(t+ 1) = w(t) + ηtv(t);

increment η: ηt+1 = αηt. α ∈ [1.05, 1.1]

6: else

7: reject: w(t+ 1) = w(t);
decrease η: ηt+1 = βηt. β ∈ [0.7, 0.8]

8: end if

9: Iterate to the next step, t← t+ 1.

10: end while
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Variable learning rate gradient descent. A simple heuristic that adapts
the learning rate to the error surface works well in practice. If the error drops,
increase η; if not, the step was too large, so reject the update and decrease η.
For little extra effort, we get a significant boost to gradient descent.

Variable Learning Rate Gradient Descent:

1: Initialize w(0), and η0 at t = 0. Set α > 1 and β < 1.
2: while stopping criterion has not been met do
3: Let g(t) = ∇Ein(w(t)), and set v(t) = −g(t).
4: if Ein(w(t) + ηtv(t)) < Ein(w(t)) then
5: accept: w(t+ 1) = w(t) + ηtv(t); ηt+1 = αηt.
6: else
7: reject: w(t+ 1) = w(t); ηt+1 = βηt.
8: Iterate to the next step, t← t+ 1.

It is usually best to go with a conservative increment parameter, for example
α ≈ 1.05 − 1.1, and a bit more aggressive decrement parameter, for example
β ≈ 0.5 − 0.8. This is because, if the error doesn’t drop, then one is in an
unusual situation and more drastic action is called for.

After a little thought, one might wonder why we need a learning rate at
all. Once the direction in which to move, v(t), has been determined, why not
simply continue along that direction until the error stops decreasing? This
leads us to steepest descent – gradient descent with line search.

Steepest Descent. Gradient descent picks a descent direction v(t) = −g(t)
and updates the weights to w(t + 1) = w(t) + ηv(t). Rather than pick η
arbitrarily, we will choose the optimal η that minimizes Ein(w(t + 1)). Once
you have the direction to move, make the best of it by moving along the line
w(t)+ ηv(t) and stopping when Ein is minimum (hence the term line search).
That is, choose a step size η∗, where

η∗(t) = argmin
η

Ein(w(t) + ηv(t)).

Steepest Descent (Gradient Descent + Line Search):

1: Initialize w(0) and set t = 0;
2: while stopping criterion has not been met do
3: Let g(t) = ∇Ein(w(t)), and set v(t) = −g(t).
4: Let η∗ = argminη Ein(w(t) + ηv(t)).
5: w(t+ 1) = w(t) + η∗v(t).
6: Iterate to the next step, t← t+ 1.

The line search in step 4 is a one dimensional optimization problem. Line
search is an important step in most optimization algorithms, so an efficient
algorithm is called for. Write E(η) for Ein(w(t) + ηv(t)). The goal is to find
a minimum of E(η). We give a simple algorithm based on binary search.
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Steepest descent 

 
 
 
 
 
 
 
 
 
Use line search to find the optimal value of the learning rate 
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Steepest Descent - Line Search

1: Initialize w(0) and set t = 0;

2: while stopping criterion has not been met do
3: Let g(t) = ∇Ein(w(t)), and set v(t) = −g(t).

4: Let η∗ = argminη Ein(w(t) + ηv(t)).

5: w(t+ 1) = w(t) + η∗v(t).

6: Iterate to the next step, t← t+ 1.

7: end while

How to accomplish the line search (step 4)?
Simple bisection (binary search) suffices in practice

η2 η3η1
η̄

E(η1)

E(η3)

E(η2)

w1

w
2 w∗

w(t)

w(t + 1)

contour of constant Ein

v(t)

−g(t + 1)
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Steepest Descent - Line Search

1: Initialize w(0) and set t = 0;

2: while stopping criterion has not been met do
3: Let g(t) = ∇Ein(w(t)), and set v(t) = −g(t).

4: Let η∗ = argminη Ein(w(t) + ηv(t)).

5: w(t+ 1) = w(t) + η∗v(t).

6: Iterate to the next step, t← t+ 1.

7: end while

How to accomplish the line search (step 4)?
Simple bisection (binary search) suffices in practice
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Line Search. The idea is to find an interval on the line which is guaranteed
to contain a local minimum. Then, rapidly narrow the size of this interval
while maintaining as an invariant the fact that it contains a local minimum.

η1 η3

E(η3)

η2

E(η2)

E(η1)

η1 η3η2η̄

The basic invariant is a U-arrangement:

η1 < η2 < η3 with

E(η2) < min{E(η1), E(η3)}.

Since E is continuous, there must be a local
minimum in the interval [η1, η3]. Now, consider
the midpoint of the interval,

η̄ =
1

2
(η1 + η3),

hence the name bisection algorithm. Suppose
that η̄ < η2 as shown. If E(η̄) < E(η2) then
{η1, η̄, η2} is a new, smaller U-arrangement;
and, if E(η̄) > E(η2), then {η̄, η2, η3} is the
new smaller U-arrangement. In either case, the
bisection process can be iterated with the new
U-arrangement. If η̄ happens to equal η2, per-
turb η̄ slightly to resolve the degeneracy. We leave it to the reader to determine
how to obtain the new smaller U-arrangement for the case η̄ > η2.

An efficient algorithm to find an initial U-arrangement is to start with
η1 = 0 and η2 = ε for some step ε. If E(η2) < E(η1), consider the sequence

η = 0, ε, 2ε, 4ε, 8ε, . . .

(each time the step doubles). At some point, the error must increase. When
the error increases for the first time, the last three steps give a U-arrangement.
If, instead, E(η1) < E(η2), consider the sequence

η = ε, 0,−ε,−2ε,−4ε,−8ε, . . .

(the step keeps doubling but in the reverse direction). Again, when the error
increases for the first time, the last three steps give a U-arrangement.12

Exercise 7.15

Show that |η3 − η1] decreases exponentially in the bisection algorithm.
[Hint: show that two iterations at least halve the interval size.]

The bisection algorithm continues to bisect the interval and update to a new U-
arrangement until the length of the interval |η3−η1| is small enough, at which

12We do not worry about E(η1) = E(η2) – such ties can be broken by small perturbations.
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(the step keeps doubling but in the reverse direction). Again, when the error
increases for the first time, the last three steps give a U-arrangement.12

Exercise 7.15

Show that |η3 − η1] decreases exponentially in the bisection algorithm.
[Hint: show that two iterations at least halve the interval size.]

The bisection algorithm continues to bisect the interval and update to a new U-
arrangement until the length of the interval |η3−η1| is small enough, at which

12We do not worry about E(η1) = E(η2) – such ties can be broken by small perturbations.
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Iterate this process. 
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point you can return the midpoint of the interval as the approximate local
minimum. Usually 20 iterations of bisection are enough to get an acceptable
solution. A better quadratic interpolation algorithm is given in Problem 7.8,
which only needs about 4 iterations in practice.

Example 7.3. We illustrate these three heuristics for improving gradient
descent on our digit recognition (classifying ‘1’ versus other digits). We use
200 data points and a neural network with 5 hidden units. We show the
performance of gradient descent, gradient descent with variable learning rate,
and steepest descent (line search) in Figure 7.4. The table below summarizes
the in-sample error at various points in the optimization.

Optimization Time
Method 10 sec 1,000 sec 50,000 sec

Gradient Descent 0.079 0.0206 0.00144
Stochastic Gradient Descent 0.0213 0.00278 0.000022

Variable Learning Rate 0.039 0.014 0.00010
Steepest Descent 0.043 0.0189 0.000012

optimization time (sec)

lo
g 1

0
(e

rr
or
)

gradient descent

SGD

variable η

steepest descent

0.1 1 10 102 103 104

-5

-4

-3

-2
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0

Figure 7.4: Gradient descent, variable learning rate and steepest descent
using digits data and a 5 hidden unit 2-layer neural network with linear
output. For variable learning rate, α = 1.1 and β = 0.8.

Note that SGD is quite competitive. The figure illustrates why it is hard to
know when to stop minimizing. A flat region ‘trapped’ all the methods, even
though we used a linear output node transform. It is very hard to differentiate
between a flat region (which is typically caused by a very steep valley that leads
to inefficient zig-zag behavior) and a true local minimum. !
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Conjugate gradients 

Choose a better direction than the gradient 
 
 
 
 
 
 
 
 
 
 
 
 
Use line search to find the optimal size step  
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Conjugate Gradients

1. Line search just like steepest descent.

2. Choose a better direction than −g

w1

w
2

w(t)

w(t + 1)

contour of constant Ein

v(t)

v(t + 1)

conjugate gradients

steepest descent

optimization time (sec)

lo
g 1

0(
er
ro
r)

0.1 1 10 102 103 104

-8

-6

-4

-2

0

Optimization Time
Method 10 sec 1,000 sec 50,000 sec

Stochastic Gradient Descent 0.0203 0.000447 1.6310× 10−5

Steepest Descent 0.0497 0.0194 0.000140
Conjugate Gradients 0.0200 1.13× 10−6 2.73× 10−9

There are better algorithms (eg. Levenberg-Marquardt), but we will stop here
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Accuracy depends on the number 
 of hidden units 

The number of hidden units governs the expressive power of 
the network. 
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6.8.7 Number of hidden units

While the number of input units and output units are dictated by the dimensionality
of the input vectors and the number of categories, respectively, the number of hidden
units is not simply related to such obvious properties of the classification problem.
The number of hidden units, nH , governs the expressive power of the net — and
thus the complexity of the decision boundary. If the patterns are well separated or
linearly separable, then few hidden units are needed; conversely, if the patterns are
drawn from complicated densities that are highly interspersed, then more hiddens are
needed. Thus without further information there is no foolproof method for setting
the number of hidden units before training.

Figure 6.17 shows the training and test error on a two-category classification prob-
lem for networks that differ solely in their number of hidden units. For large nH , the
training error can become small because such networks have high expressive power and
become tuned to the particular training data. Nevertheless, in this regime, the test
error is unacceptably high, an example of overfitting we shall study again in Chap. ??.
At the other extreme of too few hidden units, the net does not have enough free pa-
rameters to fit the training data well, and again the test error is high. We seek some
intermediate number of hidden units that will give low test error.

2 3 4 5 6 7 8 9

0.15

0.20

0.25

0.30

0.35

nH

J/n

test

train

9 13 17 21 25 29 33 37 total!number!fl
of!weights

0.40

Figure 6.17: The error per pattern for networks fully trained but differing in the
numbers of hidden units, nH . Each 2–nH–1 network (with bias) was trained with
90 two-dimensional patterns from each of two categories (sampled from a mixture of
three Gaussians); thus n = 180. The minimum of the test error occurs for networks in
the range 4 ≤ nH ≤ 5, i.e., the range of weights 17 to 21. This illustrates the rule of
thumb that choosing networks with roughly n/10 weights often gives low test error.

The number of hidden units determines the total number of weights in the net
— which we consider informally as the number of degrees of freedom — and thus
we should not have more weights than the total number of training points, n. A
convenient rule of thumb is to choose the number of hidden units such that the total
number of weights in the net is roughly n/10. This seems to work well over a range
of practical problems. A more principled method is to adjust the complexity of the
network in response to the training data, for instance start with a “large” number of
hiddens and prune or eliminate weights — techniques we shall study in Sect. ?? and
Chap. ??.



Regularization 

Can add a regularizer to the error function, e.g. ||w||2 

In the context of NNs this is called weight decay 
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of dichotomizing a particular arrangement. We have shown that

m(N) ≤ Ndc ·N
∑m

i=1 di = Ndc+
∑m

i=1 di .

Let D = dc +
∑m

i=1 di. After some algebra (left to the reader), if N ≥
2D log2 D, then m(N) < 2N , from which we conclude that dvc ≤ 2D log2 D.
For the 2-layer MLP, di = d + 1 and dc = m + 1, and so we have that
D = dc +

∑m
i=1 di = m(d + 2) + 1 = O(md). Thus, dvc = O(md log(md)).

Our analysis looks very crude, but it is almost tight: it is possible to shatter
Ω(md) points with m hidden units (see Problem 7.16), and so the upper bound
can be loose by at most a logarithmic factor. Using the VC-dimension, the
generalization error bar from Chapter 2 is O(

√

(dvc logN)/N) which for the

2-layer MLP is O(
√

(md log(md) logN)/N).
We will get good generalization if m is not too large and we can fit the data

if m is large enough. A balance is called for. For example, choosing m = 1
d

√
N

as N → ∞, Eout → Ein and Ein → E∗
out. That is, Eout → E∗

out (the optimal
performance) as N grows, and m grows sub-linearly with N . In practice
the ‘asymptotic’ regime is a luxury and one does not simply set m ≈

√
N .

These theoretical results are a good guideline, but the best out-of-sample
performance usually results when you control overfitting using validation (to
select the number of hidden units) and regularization to prevent overfitting.

We conclude with a note on where neural networks sit in the parametric-
nonparametric debate. There are explicit parameters to be learned, so para-
metric seems right. But distinctive features of nonparametric models also
stand out: the neural network is generic and flexible and can realize optimal
performance when N grows. Neither parametric nor nonparametric captures
the whole story. We choose to label neural networks as semi-parametric.

7.4 Regularization and Validation

The multi-layer neural network is powerful, and, coupled with gradient descent
(a good algorithm to minimize Ein), we have a recipe for overfitting. We
discuss some practical techniques to help.

7.4.1 Weight Based Complexity Penalties

As with linear models, one can regularize the learning using a complexity
penalty by minimizing an augmented error (penalized in-sample error). The
squared weight decay regularizer is popular, having augmented error:

Eaug(w) = Ein(w) +
λ

N

∑

!,i,j

(w(!)
ij )2

The regularization parameter λ is selected via validation, as discussed in Chap-
ter 4. To apply gradient descent, we need ∇Eaug(w). The penalty term adds
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Early stopping 

 
 
 
 
 
 
 
 
 
Early stopping (halting before a local minimum is reached) is a 
method for avoiding overfitting. 
This is a form of regularization:  not allowing the algorithm to to 
fully explore the hypothesis space reduces the effective VC 
dimension 
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w0

w1

w2

H2

w0

w1

w2

w3

H3

Now consider the second step, as illustrated to the
right, which moves to w2. We indirectly explored the
hypothesis set of weights with ‖w−w1‖ ≤ η, picking
the best. Since w1 was already the minimizer of Ein

over H0, this means that w2 is the minimizer of Ein

among all hypotheses in H2, where

H2 = H1 ∪ {w : ‖w −w1‖ ≤ η}.

Note that H1 ⊂ H2. Similarly, we define hypothesis set

H3 = H2 ∪ {w : ‖w −w2‖ ≤ η},

and in the 3rd iteration, we pick weights w3 than min-
imize Ein over w ∈ H3. We can continue this argument
as gradient descent proceeds, and define a nested se-
quence of hypothesis sets

H1 ⊂ H2 ⊂ H3 ⊂ H4 ⊂ · · · .

As t increases, Ein(wt) is decreasing, and dvc(Ht) is increasing. So, we ex-
pect to see the approximation-generalization trade-off which was illustrated in
Figure 2.3 (reproduced here with iteration t a proxy for dvc):

Ein(wt)

Ω(dvc(Ht))

Eout(wt)

iteration, t

E
rr

or

t∗

The figure suggests it may be better to stop early at some t∗, well before
reaching a minimum of Ein. Indeed, this picture is observed in practice.

Example 7.2. We revisit the digits task of classifying ‘1’ versus all other
digits, with 70 randomly selected data points and a small sigmoidal neural
network with a single hidden unit and tanh(·) output node. The figure below
shows the in-sample error and test error versus iteration number.
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iteration, t
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The curves reinforce our theoretical discussion: the test error initially decreases
as the approximation gain overcomes the worse generalization error bar; then,
the test error increases as the generalization error bar begins to dominate the
approximation gain, and overfitting becomes a serious problem. !

In the previous example, despite using a parsimonious neural network with
just a single hidden node, overfitting was an issue because the data are noisy
and the target function is complex, so both stochastic and deterministic noise
are significant. We need to regularize.

w0

wt∗

contour of constant Ein

In the example, it is better to stop early
at t∗ and constrain the learning to the
smaller hypothesis set Ht∗ . In this sense,
early stopping is a form of regularization.
Early stopping is related to weight decay,
as illustrated to the right. You initialize w0

near zero; if you stop early at wt∗ you have
stopped at weights closer to w0, i.e., smaller
weights. Early stopping indirectly achieves
smaller weights, which is what weight decay
directly achieves. To determine when to stop
training, use a validation set to monitor the
validation error at iteration t as you minimize the training-set error. Report
the weights wt∗ that have minimum validation error when you are done train-
ing.

After selecting t∗, it is tempting to use all the data to train for t∗ iterations.
Unfortunately, adding back the validation data and training for t∗ iterations
can lead to a completely different set of weights. The validation estimate of
performance only holds for wt∗ (the weights you should output). This appears
to go against the wisdom of the decreasing learning curve from Chapter 4: if
you learn with more data, you get a better final hypothesis.10

10Using all the data to train to an in-sample error of Etrain(wt∗ ) is also not recommended.
Further, an in-sample error of Etrain(wt∗ ) may not even be achievable with all the data.
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Multi-class problems 

How would you use a neural network to solve a multi-class 
classification problem with c classes? 
 
Train a network with c output units. 
 
Encode the labels using the “one-of-c” encoding:  a vector with 
one element equal to 1 and the rest 0. 
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Outputs as probabilities 

When using a sigmoidal activation function for a single-output 
network, it can be interpreted as a probability. 
 
With multiple output units the individual values won’t sum to 1. 
 
The fix is to use the softmax activation function, which is a 
generalization of the logistic function that normalizes outputs 
to sum to 1. 
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