Neural Networks

Neural networks

Artificial neural networks: computational models inspired by
the brain

P roperties: 7Dendrites
Highly interconnected |
Distributed computation/memory
Robust to noise, failures

N)

http://dragonoverwashington.blogspot.com/
2013/03/the-blue-brain-project-making-human.html

The perceptron as a neural network

Interpreting the perceptron as a single-layer neural network

sign(w'x)

Towards the multi-layer perceptron (MLP)

Consider the following dataset:

X1

It's clearly not linearly separable!

Towards the multi-layer perceptron

It can be addressed using a combination of multiple linear
classifiers:

f = hihy + hihs

4=l

X9
xo

+1

X1 X

—

hi(x) = sign(w{x ho(x) = sign(wjx)

The multi-layer perceptron

A graph representation of the combined classifier:

The multi-layer perceptron

A graph representation of the combined classifier:

More layers provide the flexibility required to represent the
target function

The multi-layer perceptron

Given enough hidden neurons, it is possible to approximate
arbitrary functions using this framework.

— — _\%/_ _\5

Target 8 perceptrons 16 perceptrons

v
z

s

The problem: fitting the data is a combinatorial optimization
problem (E;, is not a smooth function due to the sign function).

The multi-layer perceptron

The problem: fitting the data is a combinatorial optimization
problem (E;, is not a smooth function due to the sign function).

Solution: replace the sign function with a sigmoid function

linear

tanh
e — e

eSS+ e %

0(s) = tanh(s) =

sign

Feed forward neural networks

The architecture for a feed-forward neural network:

input layer £ =0 hidden layers 0 < ¢ < L output layer ¢ = L

This network has three layers of neurons and weights (we don't
count the input layer).

10

Anatomy of a neuron

Let's look more closely at a pair of neurons

layer (¢ —1) layer /¢
signals in s(f) d¥) dimensional input vector
outputs x () d¥) + 1 dimensional output vector
weights in - | W& (d“~Y + 1) x d¥) dimensional matrix

weights out

WD (@ + 1) x dF1) dimensional matrix

1

Anatomy of a neuron

The interconnections of layer I:

W®
layer (/ —1) layer /¢ layer (¢ +1)
signals in s(f) d¥) dimensional input vector
outputs x () d¥) + 1 dimensional output vector
weights in - | W& (d“~Y + 1) x d¥) dimensional matrix

weights out

WD (@ + 1) x dF1) dimensional matrix

12

Forward propagation

signals in
outputs
weights in
weights out

0 d¥) dimensional input vector

(
S
x () d¥) + 1 dimensional output vector

WO (dD 4 1) x d¥ dimensional matrix

WD (@ 4+ 1) x dD dimensional matrix

bﬁ
QJM
O-

layer (¢ —1)

_> Sy) _ (Wy))Tx(f—l)
50 : < s — (W(@)TX(E—D

1
£) _
layer ¢ X N [9(8(6))])

13

Forward propagation

Computing the hypothesis h(x):

= xO WY) 0)W) 0, ()

\WASY

w (2)

Forward propagation to compute h(x):

1
2

3:

: X(O) <— X

. for/=1to L do
50 (W(ﬁ))TX(IZ—l)

x(&) [

1

(s9))

|

[Initialization]
[Forward Propagation]

1

[Output] Q x(¢=D)
—>

O-

layer (¢ —1)

s Ly x() = p(x)

0

<0

layer ¢

14

Minimizing the in-sample error

Computing the hypothesis h(x):

Now we are ready to compu’re the in-sample error:

(h(xn; W) - yn)2

2|~
] =

Ein (W) =

S
I
—_

(X%L) - yn)2'

I
2|~
] =

S
I
—_

If we use a smooth sigmoid function, it is differentiable, and we
can use gradient descent.

w(t+1)=w(t) —nVEn(w(t))

15

Minimizing the in-sample error
Let's express the in-sample error as:
1 N
= N Z:len.
where: e, = e(h(Xn),Yn).

And for the squared error e(h,y) = (h — y)?

We need the derivative with respect to each weight matrix:

Oe,,
8W(5) N Z OW (©)

So we need De(x)
oW (@)

16

Digression: the chain rule

Oe(x)
W)

We need to take the derivative

However, the error is not a direct function of the weights.

To find it, first let's consider a
simpler case:

input layer £ =0 hidden layers 0 < ¢ < L output layer ¢ = L

{2
>
O

|
IS
Kl KN

=

0z & o
Ay ﬁy Ox g‘r
Y —_ 9z 9y
By Az = oy 9z AT
ar
dz

17

Example: the perceptron

In the case of a perceptron with a single neuron and tanh
activation function:

For the sigmoidal perceptron, h(x) = tanh(w"x), let the in-sample error
be Ein(w) = + SV (tanh(W™x,) — yn)?. Show that

Z tanh(w"x,) — yn)(1 — tanh® (W%,))Xn.
n:1

What happens when components of w are large?

18

Example: the perceptron

In the case of a perceptron with a single neuron and tanh
activation function:

For the sigmoidal perceptron, h(x) = tanh(w"x), let the in-sample error
be Ein(w) = + SV (tanh(W™x,) — yn)?. Show that

Z tanh(w"x,) — yn)(1 — tanh® (W%,))Xn.

For multi-layer architectures there is no closed form expression
for the gradient

19

Digression: the chain rule

When there are multiple infermediate variables we need to sum
the influence of each one:

9z _ 0z 9y Az Oys
— By1 Ox dys Ox

20

Computing the gradient

e(x) is a function of s and s\ = (W¥))Tx(¢=1)

Therefore we can express the gradient of the error as:

Oe ost) (Oe

T
OW) oW as(g)> (by the chain rule)

Dimensions:

(@1 +1)xd®

where Fe

(6) _
0 = Os(?)

is the sensitivity vector for layer /

21

Backpropagation

Computing the sensitivities:

7T T 0 5P

J

(£)
5(g) B Oe B Oe 8Xj g’ (S(-E)) . Oe
J 5’X§£)

(since e depends on s only through x?)

4D (i d+D
e N g K g
8X§-e) —1 8X§£) 85,({;”1) —

(because a change in component j of x? affects every component
of s?*7)

L) _ y)2

o e = (x(

layer (¢ — 1) layer ¢ layer (¢ + 1)

22

Backpropagation

We can compute the gradient by "backpropagating” the
sensitivity vectors:

d¢+1)
14 14 /41 /41
50 =06 S uft Vs
k=1

+

O [T9
z wesn [0 ‘—O
O Lo

layer ¢ layer (¢ + 1

o) @ s L 5T

23

Backpropagation

U 5@ .. gD L s

Backpropagation to compute sensitivities §:
(Assume s\ and x1¥) have been computed for all ¢)

L 0 () —qp) - 9/ (sWD)) [Initialization]
» for{=L—1to1 do [Back-Propagation]
» Compute (for tanh hidden node):
4@
(s = |1 — xO & x®
0'(s\") [1 > QD L
. 80— g(s0) @ [WED§E] il“) 1 o e

- end for

24

Backpropagation

10

|

8:

9:

Algorithm to Compute Ey,(w) and g = VE,(w):
Input: weights w = {WW . W1 data D.
Output: error Fy,(w) and gradient g = {G1), ... G}

- Initialize: By, =0;for ¢ =1,...,L,GY =0.- WU

. for Each data point x,, (n =1,...,N) do
Compute x) for ¢ = 0,..., L. [forward propagation]

Compute 6 for ¢ =1,..., L. |

L)

backpropagation]
By, By, + %(Xg — yn>2

for (=1,...,L do
GO(x,) = [x=D(8O)T]
GO + G+ LGW(x,).

end for

. end for

Using the gradient for W(ﬁ) . W(ﬁ) _ 77Gr(f)

gradient descent:

25

History of backpropagation
The method was proposed independently several times:

Rumelhart, David E.; Hinton, Geoffrey E., Williams, Ronald J. (8
October 1986). "Learning representations by back-propagating
errors". Nature 323 (6088): 533-536.

Paul J. Werbos. Beyond Regression: New Tools for Prediction
and Analysis in the Behavioral Sciences. PhD thesis, Harvard
University, 1974

26

Batch vs stochastic update

Stochastic gradient descent: update the weight vector after
the gradient with respect to a given training example has been
computed.

Batch gradient descent: aggregate the gradients across all
training examples before updating the weight vector.

SGD is more effective:

Gradient Descent

log,(error)

log,,(iteration)

27

Batch vs stochastic update

Batch training is typically slower than stochastic.
Why?

Assume there are several duplicates of a given example.

The update made from the duplicates is not contributing to
convergence.

In real data you will have examples that are correlated.

There are methods for accelerating batch training (e.g.
conjugate gradient method), and it's easier to determine
convergence.

28

Batch vs stochastic update

Batch training is typically slower than stochastic.

There are methods for accelerating batch training (e.g.
conjugate gradient method), and it's easier to determine
convergence.

Stochastic learning often leads to better local minima (the cost
function is not monotonically decreasing, and can sometimes help
escape to a basin of a deeper local minimum).

Can smooth the progress of stochastic learning by processing
examples in batches, and varying batch size and learning rate.

29

More tricks

Neural networks benefit from the same types of normalization
as other geometrical methods (SVMs/perceptron)

30

Activation functions

Common activation functions: m——
| -n dhy(@)/d
w— h,(a)
tanh(ZU) == dh,(a)/da
-1.05) 2 0 2 2 6
L 1
Logistic

function 1 | exp(x)
Linear (useful for regression problems)

Gaussian (aka radial basis function)

More tricks

If the input is centered/standardized, it's usually better to use
a tanh activation function than the logistic function.

Because we want to produce outputs that are centered around O
(the logistic function produces a positive output)

32

Online training

Assume a situation where you have a huge dataset that you can't
store in memory.

Solution: Online training - cycle thru the dataset once, updating
as in the stochastic version.

Useful when data arrives as a "stream”.

33

Comments about backpropagation

What can we say about the error surface?

Can have multiple local minima. Therefore backpropagation
doesn't necessarily finds the global minimum.

Is this a problem? Not necessarily.

Compare to SVM which have a globally optimal solution, and
typically faster training times.

34

Comments about backpropagation

What can we say about the error surface?

Can have multiple local minima. Therefore backpropagation
doesn't necessarily finds the global minimum.

Another issue: plateaus - regions where the error is more or

less constant

Weights, w

Ein

35

Comments about backpropagation

Plateaus arise because of
saturation of the activation
function.

How to avoid them?

Initialize with small weights

-
=

Weights, w

Ein

Initialize weights to be inversly
proportional to the fan-in of a unit

36

Comments about backpropagation

Plateaus arise because of
saturation of the activation
function.

How to avoid them?

Momentuml!

s 2) 0 2 2 6

w(m+1)=w(m)+ Aw(m) +£)4Aw(m — 12

-

7

aV a

gradient
descent

Ve

momentum

37

Comments about backpropagation

Alternative: more sophisticated methods than gradient descent
e.g. scaled conjugate gradient

38

Choosing a learning rate

The choice of the learning rate depends on the shape of the
error surface:

= =
& =

oy -

S S

& L »
; in(W) i.j Ein(w)
s g

< =

¢ i
A= k=

weights, w weights, w

wide: use large 7. narrow: use small 7.

39

Variable learning rate

A simple heuristic: if the error drops, increase, if it increases,
reject the update and decrease

1 Initialize w(0), and 79 at t = 0. Set @« > 1 and 5 < 1.

o. while stopping criterion has not been met do

3:

4:

5:

8:
9:

1. end while

Let g(t) = VEw(w(t)), and set v(t) = —g(t).

if B (w(t) +mv(t) < Ew(w(t)) then
accept: w(t+ 1) = w(t) + nv(¢);

increment 7: 141 = Q. a € [1.05,1.1]
else

reject: w(t+ 1) = w(t);

decrease n: ny1 = Bny. B €[0.7,0.8]
end if

Iterate to the next step, t < ¢t + 1.

1.05 - 1.1
0.5 — 0.8.

QU

Choosing the parameters:

= Q

40

Steepest descent

1 Initialize w(0) and set t = 0;

2. while stopping criterion has not been met do
5. Let g(t) = VEw(w(t)), and set v(t) = —g(t).

o

Let n* = argmin, Ei,(w(t) +nv(t)).

w(t+ 1) =w(t) +n*v(t).

52

6. Iterate to the next step, t < ¢ + 1.

7. end while

Use line search to find the optimal value of the learning rate

41

Line search

Find values m < ne <n3 with
E(nz2) < min{E(m), E(n3)}.

Since F is continuous, there must be a local
minimum in the interval 11, n3]. Now, consider
the midpoint of the interval,

n = _(771 +773)7

Iterate this process.

Ui

2 13

42

Comparison of optimization methods

—— gradient descent

I saep
=l variable n
—— steepest descent
0.1 1 1.0 1(.)2 1(.)3 164

optimization time (sec)
Figure 7.4: Gradient descent, variable learning rate and steepest descent

using digits data and a 5 hidden unit 2-layer neural network with linear
output. For variable learning rate, « = 1.1 and 8 = 0.8.

43

Conjugate gradients

Choose a better direction than the gradient

steepest descent

contour of constant Fji,

log,(error)

conjugate gradients

w9

0.1 1 10 10? 10° 10*

optimization time (sec)

wq
Use line search to find the optimal size step

44

Accuracy depends on the number
of hidden units

The number of hidden units governs the expressive power of
the network.

J/n
0.404

0.35}

test
0.30¢
0.25¢ ‘\\——*\

train

0.20¢
0.15} 9 12 17 21 25 29 33 387 total-number-fl
. - - - » of - weights
> nH

2 3 4 5 6 7 8 9

Regularization

Can add a regularizer to the error function, e.g. | |w]|?
In the context of NNs this is called weight decay

A ¢
Eaug(w) — Ein(w) + N Z(wfj))Q
1,9

46

Early stopping

Eout (Wt

Error

t* iteration, ¢

Early stopping (halting before a local minimum is reached) is a
method for avoiding overfitting.

This is a form of regularization: not allowing the algorithm fo to
fully explore the hypothesis space reduces the effective VC
dimension

47

Early stopping

-0.2¢

-0.6f

log,,(error)

10? 107 10*
iteration, ¢
Early stopping (halting before a local minimum is reached) is a
method for avoiding overfitting.

This is a form of regularization: not allowing the algorithm fo to
fully explore the hypothesis space reduces the effective VC
dimension

Multi-class problems

How would you use a neural network to solve a multi-class
classification problem with c classes?

Train a network with c output units.

Encode the labels using the "one-of-c" encoding: a vector with
one element equal o 1 and the rest O.

49

Outputs as probabilities

When using a sigmoidal activation function for a single-output
network, it can be interpreted as a probability.

With multiple output units the individual values won't sum to 1.

The fix is to use the softmax activation function, which is a
generalization of the logistic function that normalizes outputs
To sum to 1.

50

