Linear models: the perceptron and
closest centroid algorithms

Chapter 1,7 ~

Preliminaries

Definition: The Euclidean dot product between two vectors is
the expression d
WTX = Z W; Ty
i=1

The dot product is also referred to as inner product or scalar
product.

It is sometimes denotedas W - X
(hence the name dot product).

Preliminaries

Definition: The Euclidean dot product between two vectors is
the expression d
WTX = Z w;T;
i=1

The dot product is also referred to as inner product or scalar
product.

It is sometimes denoted as W - X

(hence the name dot product).

Geometric interpretation. The dot product between two unit
vectors is the cosine of the angle between them.

The dot product between a vector and a unit vector is the
length of its projection in that direction.

Labeled data

A labeled dataset:
D= {(Xi7 yl) ?:1

Where X; € Rd are d-dimensional vectors

The labels:
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Labeled data

A labeled dataset:
D= {(Xi7 yz) ?:1

Where X; € Rd are d-dimensional vectors

The labels:

are continuous values for a
regression problem

Linear models
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Linear models for classification

Linear models for regression

Linear models for classification
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Discriminant/scoring function: f(x) =wlx +b

/ 1

weight vector bias

Linear models for classification
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Decision boundary:
alxsuchthat  f(x) =wTx+b=0

For linear models the the decision boundary is a line in 2-d, a plane
in 3-d and a hyperplane in higher dimensions
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Linear models for classification
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Using the discriminant to
make a prediction:

g = sign(wTx + b)

the sigh function equals 1 when its argument is positive and -1 otherwise

Linear models for classification

1.0

1.9

Decision boundary:
all x such that f(X) —wix+b=0

What can you say about the decision boundary when b = 0?

Linear models for regression

When using a linear model for regression the scoring function is
the prediction:

Jg=w'x+b

Why linear?

o It's agood baseline: always start simple
o Linear models are stable

a Linear models are less likely to overfit the training
data because they have relatively less parameters.
Can sometimes underfit. Often all you need when
the data is high dimensional.

o Lots of scalable algorithms
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Closest centroid classifier

Large margin classification

1.0

Non-linear large margin classifiers

There is a neat mathematical trick that will enable us to use linear
classifiers to create non-linear decision boundaries!

From linear to non-linear

5
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Original data: not linearly separable Transformed data: (x'y') = (x2, y2)
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Closest centroid classifier

Define:
p =L S ox w0 - Y ok
Pos ! Neg
{ilyi=1} {ilyi=—1}

where Pos/Neg is the number of positive/negative examples.
This is the center of mass of the positive/negative examples.

Classify an input x according to which center of mass it is
closest to.

Let's express this as a linear classifier!

See page 21-22 in the textbook

Closest centroid classifier

Our hyperplane is going be perpendicular to the vector that
connects the two centers of mass. Therefore:

w = p — g

Closest centroid classifier

To find the bias term we use the fact that the midpoint between the
means is on the hyperplane, i.e.
(+) 1 (=)
w . % Lh—0

Closest centroid classifier

P

With a little algebra:  p = 7%“‘(4_) — N () 4 )

The norm of a vector: — _%(||”(+)||2 _ Hu(—)HQ)

x| =x - x
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Linearly separable data

Linearly separable data: there exists a linear
decision boundary separating the classes.

Example:

The bias and homogeneous coordinates

In some cases we will use algorithms that learn a discriminant
function without a bias term. This does not reduce the
expressivity of the model because we can obtain a bias using the
following trick:

Add another dimension x, to each input and set it to 1.

Learn a weight vector of dimension d+1 in this extended space,
and interpret wy as the bias term. With the notation

W= (w1,...,Wq) W= (wo,wy,... wy)
x=(1,z1,...,2q)
We have that:
W X=wy+W-X

See page 4 in the book 2

The perceptron algorithm Rosenblatt, 1957)

Idea: iterate over the training examples, and update the weight
vector w in a way that would make x; is more likely to be
correctly classified.

Let's assume that x; is misclassified, and is a positive example

ie.

Note: we're learning a classifier
without a bias term

w-x; <0
We would like to update w to w' such that
/
W -X; > W-X;
This can be achieved by choosing
/
W =W + nX;
Where () < n<1 is the learning rate

Rosenblatt, Frank (1957), The Perceptron--a perceiving and recognizing automaton.
Report 85-460-1, Cornell Aeronautical Laboratory.

Section 7.2 in the book 2

The perceptron algorithm

If x; is a negative example, the update needs to be opposite.
Overall, we can summarize the two cases as:

w =W+ nyx;

Input: labeled data D in homogeneous coordinates
Output: weight vector w

w=20
converged = false
while not converged :
converged = true
for i in 1,..,|D]|
if x; is misclassified update w and set
converged=false
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The perceptron algorithm

The algorithm makes sense, but let's try to derive in a more
principled way.

The algorithm is trying to find a vector w that separates
positive from negative examples.

We can express that as:

yiw'x; >0, i=1,...,n

For a given weight vector w the degree to which this does not
hold can be expressed as:

E(w)=— E yiwTx;
i: x; is misclassified

We want to find w that minimizes or maximizes this criterion?

Digression: gradient descent

Given a function E(w), the gradient is the direction of
steepest ascent

Therefore to minimize E(w), take a step in the direction of the
negative of the gradient

Notice that the gradient is perpendicular
to contours of equal E(w)

Images from http://enwikipedia.org/wiki/Gradient_descent 2

Gradient descent

We can now express gradient descent as:
w(t+1)=w() —nVE(w)
OE(w)
t) —
w(t) —n—p

where

ow gy

And w(t) is the weight vector at iteration t

8w1 6wd

OE(w) _ (95) | 95w’

The constant 1 is called the step size (learning rate when used
in the context of machine learning).

The perceptron algorithm

Let's apply gradient descent to the perceptron criterion:

E(w)=— Z YiwTx;
i: x; is misclassified
OE(w) S
= - YiX
BW 7: X; is misclassified
OE(w)
wit+1) = w(t) =05

w(t)+n Z YiXi

i: x; is misclassified

Which is exactly the perceptron algorithm!
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The perceptron algorithm

The algorithm is guaranteed to converge if the data is linearly
separable, and does not converge otherwise.

Issues with the algorithm:

o The algorithm chooses an arbitrary hyperplane that
separates the two classes. It may not be the best one from
the learning perspective.

a Does not converge if the data is not separable (can halt after
a fixed number of iterations).

There are variants of the algorithm that address these issues
(to some extent).

Perceptron for regression
Replace the update equation with:
! ~ N2
w =w+n(yi — )X

This is not likely to converge so the algorithm is run for a fixed
number of training epochs

Training epoch - one complete run through the training data
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