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I.  Introduction 

 Software now controls banking systems, all forms of telecommunications, process control 

in nuclear plants and factories, as well as defense systems.  Even in households without a PC, 

many of the gadgets and the automobiles are software controlled.  The society has developed an 

extraordinary dependence on software.  There are many well known cases of tragic consequences 

of software failures.  In popular software packages used everyday, a very high degree of reliability 

is needed, because the enormous investment of the software developer is at stake.  Studies have 

shown that reliability is regarded as the most important attribute by potential customers. 

 It is not possible to write software which is totally defect free, except possibly for very 

small programs.  All programs must be tested and debugged, until sufficiently high reliability is 

achieved.  Total elimination of all faults in large software systems is infeasible.  Software must be 

released at some point in time, further delay will cause unacceptable loss of revenue and market 

share.  The developer must take a calculated risk and must have a strategy for achieving the 

required reliability by the target release date. 

 In recent past, enough data has become available to develop and evaluate methods for 

achieving high reliability.  Developing reliable software has become an engineering discipline 

rather than an art.  For hardware systems, quantitative methods for achieving and measuring 

reliability have been in universal use for a long time.  Similar techniques for software are coming in 

use due to emergence of well understood and validated approaches.   

 Here we will use the terms  failure and a defect as defined below [1].   

Failure:  a departure of the system behavior from user requirements during execution.   
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Defect (or fault):  an error in system implementation that can cause a failure during execution. 

 A defect will cause a failure only when the erroneous code is executed, and the effect is 

propagated to the output.  The testability of a defect is defined as the probability of detecting it 

with a randomly chosen input.  Defects with very low testability can be very difficult to detect. 

 Some mathematical concepts are applicable to both software and hardware reliability.  

Hardware faults often occur due to aging.  Combined with manufacturing variation in the quality 

of identical hardware components, the reliability variation can be characterized as exponential 

decay with time.  On the other hand, the software reliability improves during testing as bugs are 

found and removed.  Once released, the software reliability is fixed.  The software will fail time to 

time during operational use when it cannot respond correctly to an input.  Reliability of hardware 

components is often estimated by collecting failure data for a large number of identical units.  For 

a software system, its own past behavior is often a good indicator of its reliability, even though 

data from other similar software systems can be used for making projections [2]. 

 

II.  Development Phases 

 A competitive and mature software development organization targets a high reliability 

objective from the very beginning of software development.  Generally, the software life cycle is 

divided into the following phases. 

A.  Requirements and definition:  In this phase the developing organization interacts with the 

customer organization to specify the software system to be built.  Ideally, the requirements should 

define the system completely and unambiguously.  In actual practice, there is often a need to do 

corrective revisions during software development. A review or inspection during this phase is 

generally done by the design team to identify conflicting or missing requirements.  A significant 

number of errors can be detected by this process. A change in the requirements in the later phases 

can cause increased defect density. 

B.  Design:  In this phase, the system is specified as an interconnection of units, such that each unit 

is well defined and can be developed and tested independently.  The design is reviewed to recognize 
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errors. 

C.  Coding:  In this phase, the actual program for each unit is written, generally in a higher level 

language such as C or C++.  Occasionally, assembly level implementation may be required for 

high performance or for implementing input/output operations.  The code is inspected by analyzing 

the code (or specification) in a team meeting to identify errors. 

D.  Testing:  This phase is a critical part of the quest for high reliability and can take 30 to 60% of 

the entire development time.  It is generally divided into these separate phases. 

 1.  Unit test:  In this phase, each unit is separately tested, and changes are done to remove 

the defects found.  Since each unit is relatively small and can be tested independently, they can be 

exercised much more thoroughly than a large program. 

 2.  Integration testing:  During integration, the units are gradually assembled and partially 

assembled subsystems are tested.  Testing subsystems allows the interface among modules to be 

tested.  By incrementally adding units to a subsystem, the unit responsible for a failure can be 

identified more easily. 

 3.  System testing:  The system as a whole is exercised during system testing.  Debugging 

is continued until some exit criterion is satisfied.  The objective of this phase is to find defects as 

fast as possible.  In general the input mix may not represent what would be encountered during 

actual operation. 

 4.  Acceptance testing:  The purpose of this test phase is to assess the system reliability 

and performance in the operational environment.  This requires collecting (or estimating) 

information about how the actual users would use the system.  This is also called alpha-testing.  

This is often followed by beta-testing, which involves actual use by the users. 

 5.  Operational use:  Once the software developer has determined that an appropriate 

reliability criterion is satisfied, the software is released.  Any bugs reported by the users are 

recorded but are not fixed until the next release. 

 6.  Regression testing:  When significant additions or modifications are made to an existing 

version, regression testing is done on the new or "build" version to ensure that it still works and has 



 

 
 
 4 

not "regressed" to lower reliability. 

 It should be noted that the exact definition of a test phase and its exit criterion may vary 

from organization to organization. 

 Table 1 below shows the typical fraction of total defects introduced and found during a 

phase [3, 4].  Most defects occur during design and coding phases.  The fraction of defects found 

during the system test is small, but that may be misleading.  The system test phase can take a long 

time because the defects remaining are much harder to find.  It has been observed that the testing 

phases can account for 30% to 60% of the entire development effort. 



 

 
 
 5 

 

Table 1: Defects introduced and found during different phases. 

 Defects (%) 

Phase Introduced Found Remaining 

Requirements analysis 10  5  5 

Design 35 15 25 

Coding 45 30 40 

Unit test  5 25 20 

Integration test  2 12 10 

System test  1 10  1 

  

 

III.  Software Reliability Measures 

 The classical reliability theory generally deals with hardware.  In hardware systems the 

reliability decays because of the possibility of permanent failures.  However, this is not applicable 

for software.  During testing, the software reliability grows due to debugging and becomes constant 

once defect removal is stopped.  The following are the most common reliability measures used. 

Durational reliability: Following classical reliability terminology, we can define reliability of a 

software system as: 

 R(t) = Pr {no system failures during (o,t)} (1) 

Transaction reliability: Sometimes a single-transaction reliability measure, as defined below, is 

more convenient to use. 

 R = Pr {a single transaction will not encounter a failure} (2) 
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 Both measures above assume normal operation, i.e. the input mix encountered obeys the 

operational profile (defined below).  

Mean-time-to-failure (MTTF):  The expected duration between two successive failures. 

Failure intensity (λ):  The expected number of failures per unit time.  Note that: 

 (3) 

 

 Since testing attempts to achieve a high defect-finding rate, failure intensity during testing 

λt is significantly higher than λop, failure intensity during operation.  Test-acceleration factor A is 

given by: 

 (4) 

and is controlled by the test selection strategy and the type of application. 

Example 1:  For a certain telecommunication application, the acceleration factor A has been found 

to be 10 in the past.  For the current version, the target operational failure intensity has been 

decided to be 2.5x10-3 per second based on market studies.  Then the target test failure intensity is: 
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Defect density:  Usually measured in terms of the number of defects per 1000 source lines of code 

(KSLOC).  It cannot be measured directly, but can be estimated using the growth and static models 

presented below.  The failure intensity is approximately proportional to the defect density.  The 

acceptable defect density for critical or high volume software can be less than 0.1 defects/KLOC, 

whereas for other applications 5 defects/KLOC may be acceptable. Sometimes weights are 

assigned to defects depending on the severity of the failures they can cause. To keep analysis 

simple, here we assume that each defect has the same weight. 

Test coverage measures:  Tools are now available that can automatically evaluate how thoroughly 

a software has been exercised.  These are some of the common coverage measures. 

• Statement coverage:  The fraction of all statements actually exercised during testing. 

• Branch coverage:  The fraction of all branches that were executed by the tests. 

• P-use coverage:  The fraction of all predicate use (p-use) pairs covered during testing.  A p-use 

pair includes two points in the program, a point where the value of a variable is defined or 

modified followed by a point where it is used for a branching decision, i.e. a predicate. 

 The first two are structural coverage measures, while the last is a data-flow coverage 

measure.  As discussed below, test coverage is correlated with the number of defects that will be 

triggered during testing [5].  100% statement coverage can often be quite easy to achieve.  

Sometimes a predetermined branch coverage, say 85%, may be used as an acceptance criterion for 

testing. 

 

IV.  What Factors Control Defect Density? 

 There has been considerable research to identify the major factors that correlate with the 

number of defects.  Enough data is now available to allow us to use a simple model for estimating 

the defect density.  This model can be used in two different ways.  First, it can be used by an 

organization to see how they can improve the reliability of their products.  Secondly, by estimating 
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the defect density, one can use a reliability growth model to estimate the testing effort needed. The 

model by Malaiya and Denton [6],  based on the data reported in the literature, is given by  

(5) 

D C F F F Fph pt m S= . . . .   

 

where the five factors are the phase factor Fph, modeling dependence on software test phase, the 

programming team factor Fpt taking in to account the capabilities and experience of programmers 

in the team, the maturity factor Fm depending on the maturity of the software development process, 

the structure factor Fs, depending on the structure of the software under development . The 

constant of proportionality C represents the defect density per thousand source lines of code 

(KSLOC). We propose the following preliminary  sub-models for each factor. 

 

Phase Factor Fph: Table 2 presents a simple model using actual data reported by Musa et al. and 

the error profile presented by Piwowarski et al. It takes the default  value of one to represent the 

beginning of the system test phase. 

 Table 2: Phase Factor Fph 

At beginning of phase Multiplier 

Unit testing 4 

Subsystem testing 2.5 

System testing 1 (default) 

Operation 0.35 

 

The Programming Team Factor Fpt: The defect density varies significantly due to the coding and 

debugging capabilities of the individuals involved.  A quantitative characterization is in terms of 

programmers average experience in years is given by Takahashi and Kamayachi [7]. Their model 
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can take into account programming experience of up to 7 years, each year reducing the number of 

defects by about 14%.  

Based on other available data, we suggest the model in  Table 3. The skill level may depend on 

factors other than just the experience. Programmers with the same experience can have 

significantly different defect densities, that can also be taken into account here. 
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Table 3: The Programming Team Factor Fpt 

Team’s average skill level Multiplier 

High 0.4 

Average 1 (default) 

Low 2.5 

 

The Process Maturity Factor Fm: This factor takes into account the rigor of software 

development  process at a specific organization. The SEI Capability Maturity Model level, can be 

used to quantify it. Here we assume level II as the default level, since a level I organization is not 

likely to be using software reliability engineering. Table 4 gives a model based on the numbers 

suggested by Jones and Keene as well as reported in a Motorola study. 

Table 4: The Process Maturity Factor Fm 

SEI CMM Level Multiplier 

Level 1 1.5 

Level 2 1 (default) 

Level 3 0.4 

Level 4 0.1 

Level 5 0.05 

 

The Software Structure Factor Fs: This factor takes into account the dependence of defect 

density on language type (the fractions of code in assembly and high level languages) and program 

complexity. It can be reasonably assumed that assembly language code is harder to write and thus 

will have a higher defect density. The influence of program complexity has been extensively 
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debated in the literature. Many complexity measures are strongly correlated to software size. Since 

we are constructing a model for defect density, software size has already been taken into account. 

A simple model for Fs depending on language use is given below. F as = +1 0 4.  

where a is the fraction of the code in assembly language. Here we are assuming that assembly code 

has 40% more defects. We allow other factors to be taken in to account by calibrating the overall 

model. 

 

Calibrating and using the defect density model: The model given in Equation 5 provides an 

initial  estimate. It should be calibrated using past data from the same organization.  Calibration 

requires application of the factors using available data in the organization and determining the 

appropriate values of the factor parameters. Since we are using the beginning of the subsystem test 

phase as the default, Musa et al.’s data suggests that the constant of proportionality C can range 

from about 6 to  20 defects per KSLOC. For best accuracy, the past data used for calibration 

should come from projects as similar to the one for which the projection needs to be made. Some of 

indeterminacy inherent in such models can be taken into account by using a high and a low 

estimate and using both of them to make projections. 

 

Example 2: For an organization, the value of C has been found to be between 12 to 16. A project 

is being developed by an average team and the SEI maturity level is II. About 20% of the code is in 

assembly language. Other factors are assumed to be average. The software size is estimated to be 

20,000 lines of code. WE want to estimate the total number of defects at the beginning of the 

integration test phase. 

From the model given by equation (5), we estimate that the defect density at the beginning of the 

subsystem test phase can range between 12×2.5×1×1×(1+0.4×0.2)×1=32.4/KSLOC and 

16×2.5×1×1×(1+0.4 ×0.2×1=43.2/KSLOC. Thus the total number of defects can range from 628 

to 864. 
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V.  Software Test Methodology 

 To test a program, a number of inputs are applied and the program response is observed.  

If the response is different from expected, the program has at least one defect.  Testing can have 

one of two separate objectives.  During debugging, the aim is to increase the reliability as fast as 

possible, by finding faults as quickly as possible.  On the other hand during certification, the object 

is to assess the reliability, thus the fault finding rate should be representative of actual operation. 

The test generation approaches can be divided into the classes. 

A.  Black-box (or functional) testing:  When test generation is done by only considering the 

input/output description of the software, nothing about the implementation of the software is 

assumed to be known.  This is the most common form of testing. 

B.  White-box (or structural) testing:  When the actual implementation is used to generate the tests. 

 In actual practice, a combination of the two approaches will often yield the best results.  

Black-box testing only requires a functional description of the program; however, some 

information about actual implementation will allow testers to better select the points to probe in the 

input space.  In random-testing approach, the inputs are selected randomly.  In partition testing 

approach, the input space is divided into suitably defined partitions.  The inputs are then chosen 

such that each partition is reasonably and thoroughly exercised.  It is possible to combine the two 

approaches; partitions can be probed both deterministically for boundary-cases and randomly for 

non-special cases. 

 Some faults are easily detected, i.e. have high testability.  Some faults have very low 

testability; they are triggered only under rarely occurring input combination.  At the beginning of 

testing, a large fraction of faults have high testability.  However, they are easily detected and 

removed.  In the later phases of testing, the faults remaining have low testability.  Finding these 

faults can be challenging.  The testers need to use careful and systematic approaches to achieve a 

very low defect density. 

 Thoroughness of testing can be measured using a test coverage measure, as discussed 
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before in section III.  Branch coverage is a more strict measure than statement coverage.  Some 

organizations use branch coverage (say 85%) as a minimum criterion.  For very high reliability 

programs, a more strict measure (like p-use coverage) or a combination of measures (like those 

provided by the GCT coverage tool) should be used. 

 To be able to estimate operational reliability, testing must be done in accordance with the 

operational profile.  A profile is the set of disjoint actions, operations that a program may 

perform, and their probabilities of occurrence.  The probabilities that occur in actual operation, 

specify the operational profile.  Sometimes when a program can be used in very different 

environments, the operational profile for each environment may be different. Obtaining an 

operational profile requires dividing the input space into sufficiently small leaf partitions, and then 

estimating the probabilities associated with each leaf partition.  A subspace with high probability 

may need to be further divided into smaller subspaces. 

Example 2:  This example is based on the Fone-Follower system example by Musa [8].  A Fone-

Follower system responds differently to a call depending on the type of call.  Based on past 

experience, the following types are identified and their probabilities have been estimated as given 

below. 

 A. Voice call   0.74 

 B. FAX call   0.15  

 C. New number entry  0.10 

 D. Data base audit   0.009 

 E. Add subscriber   0.0005 

 F Delete subscriber  0.0005 

 G. Hardware failure recovery 0.000001 

 Total for all events:   1.0 

 Here we note that a voice call is processed differently in different circumstances.  We may 

subdivide event A above into the following. 

 A1. Voice call, no pager, answer  0.18 
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 A2. Voice call, no pager, no answer  0.17 

 A3. Voice call, pager, voice answer  0.17 

 A4. Voice call, pager, answer on page 0.12 

 A5. Voice call, pager, no answer on page 0.10 

 Total for voice call (event A)   0.74 

Thus, the leaf partitions are {A1, A2, A3, A4, A5, B, C, D, E, F, G}.  These and their 

probabilities form the operational profile.  During acceptance testing, the tests would be chosen 

such that a FAX call occurs 15% of the time, a {voice call, no pager, answer} occurs 18% of the 

time and so on. 

 

 

VI.  Modeling Software Reliability Growth 

 The fraction of cost needed for testing a software system to achieve a suitable reliability 

level can sometimes be as high as 60% of the overall cost.  Testing must be carefully planned so 

that the software can be released by a target date.  Even after a lengthy testing period, additional 

testing will always potentially detect more bugs.  Software must be released, even if it is likely to 

have a few bugs, provided an appropriate reliability level has been achieved.  Careful planning and 

decision-making requires the use of a software reliability growth model (SRGM). 

 An SRGM assumes that reliability will grow with testing time t, which can be measured in 

terms of the CPU execution time used, or the number of man-hours or days.  The growth of 

reliability is generally specified in terms of either failure-intensity λ(t), or total expected faults 

detected by time t, give by µ(t).  The relationship between the two is given by: 

 (6) 
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 Let the total number of defects at time t be N(t).  Let us assume that a defect is removed 

when it is found. 

 Here we will derive the most popular reliability growth model, the exponential model.  It 

assumes that at any time, the rate of finding (and removing) defects is proportional to the number 

of defects present.  Using β1 as a constant of proportionality, we can write: 

 (7) 

It can be shown that the parameter β1 is given by: 

 (8) 

where S is the total number of source instructions, Q is the number of object instructions per 

source instruction, and r is the object instruction execution rate of the computer being used.  The 

term K is called fault-exposure ratio, its value has been found to in the range 1x10-7 to 10x10-7, 

when t is measured in seconds of CPU execution time. 

 Equation (7) can be solved to give: 

 (9) 
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 When N(0) is the initial total number of defects, the total expected faults detected by time t 

is then: 

 (10) 

which is generally written in the form: 

 (11) 

where βo, the total number of faults that would be eventually detected, is equal to N(0).  This 

assumes that no new defects are generated during debugging. 

 Using equation (6), we can obtain an expression for failure intensity using equation (11): 

 (12) 

 The exponential model is easy to understand and apply. One significant advantage of this 

model is that both parameters βo and β1 have a clear interpretation and can be estimated even 

before testing begins.  The models proposed by Jelinski and Muranda (1971), Shooman (1971), 
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God and Okumoto (1979) and Musa (1975-80) can be considered to be reformulations of the 

exponential model.  The hyperexponential model, considered by Ohba, Yamada and Lapri assumes 

that different sections of the software are separately governed by an exponential model, with 

different parameter values for different sections. 

 Many other SRGMs have been proposed and used.  Several models have been compared 

for their predictive capability using data obtained from different projects.  The exponential model 

fares well in comparison with other models, however a couple of models can outperform the 

exponential model.  We will here look at the logarithmic model, proposed by Musa and Okumoto, 

which has been found to have a better predictive capability compared with the exponential model. 

 Unlike the exponential model, the logarithmic model assumes that the fault exposure ratio 

K varies during testing.  The logarithmic model is also a finite-time model, assuming that after a 

finite time, there will be no more faults to be found.  The model can be stated as: 

 (13) 

or alternatively, 

 (14) 

Equations (13) and (14) are applicable as long as m(t) < N(0).  In practice the condition will 

almost always be satisfied, since testing always terminates while a few bugs are still likely to be 

present. 

 The variation in K, as assumed by the logarithmic model has been observed in actual 

practice.  The value of K declines at higher defect densities, as defects get harder to find.  

 
µ β β(t) =   (1 +  t)o 1ln
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However, at low defect densities, K starts rising.  This may be explained by the fact that real 

testing tends to be directed rather than random, and this starts affecting the behavior at low defect 

densities. 

 The two parameters for the logarithmic model, βo and β1, do not have a simple 

interpretation.  A possible interpretation is provided by Malaiya and Denton [6].  They have also 

given an approach for estimating the logarithmic model parameters βo
L, β1

L, once the exponential 

model parameters have been estimated. 

 The exponential model has been shown to have a negative bias; it tends to underestimate 

the number of defects that will be detected in a future interval.  The logarithmic also has a negative 

bias however it is much smaller.  Among the major models, only the Littlewood-Verral Bayesian 

model exhibits a positive bias.  This model has also been found to have good predictive 

capabilities, however because of computational complexity, and a lack of interpretation of the 

parameter values, it is not popular. 

 An SRGM can be applied in two different types of situations. 

A.  Before testing begins:  A manager often has to come up with a preliminary plan for testing 

very early.  For the exponential and the logarithmic models, it is possible to estimate the two 

parameter values based on defect density model and equation (8).  One can then estimate the testing 

time needed to achieve the target failure intensity, MTTF or defect density. 

 

Example 3:  Let us assume that for a project, the initial defect density has been estimated, using 

the static model given in equation (5), and has been found to be 25 defects/KLOC.  The software 

consists of 10,000 lines of C code.  The code expansion ratio Q for C programs is about 2.5, hence 

the compiled program will be about 10,000 x 2.5 = 25,000 object instructions.  The testing is done 

on a computer that executes 70 million object instructions per second.  Let us also assume that the 

fault exposure ratio K has an expected average value of 4x10-7.  We wish to estimate the testing 

time needed to achieve a defect density of 2.5 defects/KLOC. 

 For the exponential model, we can estimate that: 
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and from (8) 

If t1 is the time needed to achieve a defect density of 2.5/KLOC, then using equation (9),  

giving us: 

We can compute the failure intensity at time t1 to be: 

 o  =  N(O) =  25x10 =  250 defects,β
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 For this example, it should be noted that the value of K (and hence t1) may depend on the 

initial defect density and the testing strategy used.  In many cases, the time t is specified in terms of 

the number of man-hours.  We would then have to convert man-hours to CPU execution time by 

multiplying by an appropriate factor.  This factor would have to be determined using recently 

collected data.  An alternative way to estimate β1 is found by noticing that equation (8) suggests 

that for the same environment, β1xI is constant.  Thus, if for a prior project with 5 KLOC source 

code, the final value for β1 was 2x10-3 per sec.  Then for a new 15 KLOC project, β1 can be 

estimated as 2x10-3/3 = 0.66x10-3 per sec. 

B.  During testing:  During testing, the defect finding rate can be recorded.  By fitting an SRGM, 

the manager can estimate the additional testing time needed to achieve a desired reliability level.  

The major steps for using SRGMs are the following. 

 1.  Collect and pre-process data:  The failure intensity data includes a lot of short-term 

noise.  To extract the long-term trend, the data often needs to be smoothed.  A common form of 

smoothing is to use grouped data.  It involves dividing the test duration into a number of intervals 

and then computing the average failure intensity in each interval. 

 2.  Select a model and determine parameters:  The best way to select a model is to rely on 

the past experience with other projects using same process.  The exponential and logarithmic 

models are often good choices.  Early test data has a lot of noise, thus a model that fits early data 

well, may not have the best predictive capability.  The parameter values can be estimated using 

either least square or maximum likelihood approaches.  In the very early phases of testing, the 

parameter values can fluctuate enormously; they should not be used until they have stabilized. 

 3.  Perform analysis to decide how much more testing is needed:  Using the fitted model, 

we can project how much additional testing needs to be done to achieve a desired failure intensity 

or estimated defect density.  It is possible to recalibrate a model that does not confirm with the data 

to improve the accuracy of the projection.  A model that describes the process well to start with, 

can be improved very little by recalibration. 

 

Example 4:  This example is based on the T1 data reported by Musa [1].  For the first 12 hours of 
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testing, the number of failures each hour is given in Table 5 below. 

Table 5: Hourly failure data 

Hour Number of Failures 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

27 

16 

11 

10 

11 

 7 

 2 

 5 

 3 

 1 

 4 

 7 

 

 Thus, we can assume that during the middle of the first hour (i.e. t = 30 x 60 = 1800 sec) 

the failure intensity is 0.0075 per sec.  Fitting all the twelve data points to the exponential model 

(equation (12)), we obtain: 

 βo = 101.47  and  β1 = 5.22 x 10-5 

Let us now assume that the target failure intensity is one failure per hour, i.e. 2.78 x 10-4 failures 

per second.  An estimate of the stopping time tf is then given by: 

 (15) 

 2.78 x 10  =  101.47 x 5.22 x 10 e-4 -5 -5.22 x 10  x t-5
f
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yielding tf = 5 6, 4 73 sec., i.e. 15.69 hours, as shown in Figure 1 below. 

Figure 1: Using an SRGM
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 Investigations with the parameter values of the exponential model suggest that early during 

testing, the estimated value of βo tends to be lower than the final value, and the estimated value of 

β1 tends to be higher.  Thus, the value of βo tends to rise, and β1 tends to fall, with the product βoβ1 

remains relatively unchanged.  In the equation (15) above, we can guess that the true value of β1 

should be smaller, and thus, the true value of tf should be higher.  Hence, the value 15.69 hours 

should be used as a lower estimate for the total test time needed. 

 The SRGMs assume that a uniform testing strategy is used throughout the testing period.  

In actual practice, the test strategy is changed time to time.  Each new strategy is initially very 

effective in detecting a different class of faults, causing a spike in failure intensity when a switch is 

made.  A good smoothing approach will minimize the influence of these spikes during computation 

[9].  A bigger problem arises when the software under test is not stable because of continuing 

additions to it.  If the changes are significant, early data points should be dropped from the 
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computations.  If the additions are component by component, reliability data for each component 

can be separately collected and the methods presented in the next section can be used. 

It has been established that software test coverage is related to the residual defect density and hence 

reliability [5]. The defect coverage CD is linearly related to the test coverage measures at higer 

values of test coverage. For example if we are using branch coverage CB, we will find that low 

values of CB, CD remains close to zero. However at some value of CB, CD starts rising linearly, as 

given by this equation. 

(16) 

C a b CD B= − + . ,     CB>0.5 

 

 The values of the parameters a and b will depend on the software size and the initial defect 

density. The advantage of using coverage measures is that variations in test effectiveness will not 

influence the relationship, since test coverage directly measures how thoroughly a program has 

been exercised. For high reliability systems, a strict measure like p-use coverage should be used.  

VII.  Reliability of Multi-component Systems 

 A large software system consists of a number of modules.  It is possible that the individual 

modules are developed and tested differently, resulting in different defect densities and failure rates. 

 Here we will present methods for obtaining the system failure rate and the reliability, if we know 

the reliabilities of the individual modules. 

Sequential execution:  Let us assume that for a system one module is under execution at a time.  

Modules will differ in how often and how long they are executed.  If fi is the fraction of the time 

module i is under execution, then the mean system failure rate is given by: 

 (17) 
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where λi is the failure rate of the module i. 

 Let the mean duration of a single transaction be T.  Let us assume that module i is called ei 

times during T, and each time it is executed for duration di, then 

 (18) 

 Let us define the system reliability Rsys as the probability that no failures will occur during 

a single transaction.  From reliability theory, it is given by: 

 Rsys = exp(-λsys T) 

 Using equations (16) and (17), we can write the above as: 

Since exp(-diλi) is Ri, single execution reliability of module i, we have: 

 (19) 
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Concurrent execution:  Some systems involve concurrently executing modules.  They are required 

to run without failures for the system to operate correctly.  In this case, the system failure rate is 

given by [11]: 

 

sys i
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n

i = 1

( R ) i∏
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 (20) 

if there are j concurrently executing modules. 

 

N-version systems:  In some critical applications, like defense or avionics, multiple versions of the 

same program are sometimes used.  Each version is implemented and tested independently to 

minimize the probability of a multiple number of them failing at the same time.  The most common 

implementation uses triplication and voting on the result.  The system is assumed to operate 

correctly as long as the results of at least two of the versions agree.  This assumes the voting 

mechanism to be perfect.  If the failures in the three versions are truly independent, the 

improvement in reliability can be dramatic,  however it has been shown that correlated failures 

must be taken into account. 

 In a 3-version system, let q3 be the probability of all three versions failing for the same 

input.  Also, let q2 be the probability that any two versions will fail together.  Since three different 

pairs are possible among the three versions, the probability Psys of the system failing is: 

 (21) 

 In the ideal case, the failures are statistically independent.  If the probability of a single 

version failing is p, the above equation can be written for an idea case as: 

 (22) 
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 In practice, there is significant correlation, requiring estimation of q3 and q2 for system 

reliability evaluation. 

 

Example 5:  This example is based on the date collected by Knight and Leveson, and the 

computations by Hatton [12].  In a 3-version system, let the probability of a version failing for a 

transaction be 0.0004.  Then, in the absence of any correlated failures, we can achieve a system 

failure probability of: 

which would represent a remarkable improvement by a factor of 0.0004/4.8 x 10-7 = 833.3.  

However, let us assume that experiments have found q3 = 2.5 x 10-7 and q2 = 2.5 x 10-6, then 

 Psys = 2.5 x 10-7 + 3 x 2.5 x 10-6 = 7.75 x 10-6. 

This yields a more realistic improvement factor of 

 0.0004/7.75 x 10-6 = 51.6. 

 Hatton points out that the state-of-the-art techniques have been found to reduce defect 

density only by a factor of 10.  Hence an improvement factor of about 50 may be unattainable 

except by using N-version redundancy. 

 

VIII.  Tools for Software Reliability 

 sys
3 2

P  =  p  +  3(1- p) p
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P  =  (0.0004 )  +  3(1-0.0004)(0.0004 )

=  4.8 x 10
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 Software reliability has now emerged as an engineering discipline.  It can require a 

significant amount of data collection and analysis.  Tools are now becoming available that can 

automate several of the tasks.  Here names of some of the representative tools are mentioned. Many 

of the tools may run on specific platforms only, and some are intended for some specific 

applications only. Installing and learning a tool can require a significant amount of time, thus a tool 

should be selected after a careful comparison of the applicable tools available. 

• Automatic test generations: TestMaster (Teradyne), AETG (Bellcore),  ARTG (CSU), 
 etc. 

• GUI testing: QA Partner (Seague), WinRunner (Mercury Interactive) etc. 

• Memory testing: BoundsChecker (NuMega Tech.), Purify (Relational) etc. 

• Defect tracking: BugBase (Archimides), DVCS Tracker (Intersolv), DDTS 
(Qualtrack) etc. 

• Test coverage evaluation: GCT (Testing Foundation), PureCoverage (Relational), 
ATAC (Bellcore) etc. 

• Reliability growth modeling: SMERFS (NSWC), CASRE (NASA), ROBUST (CSU) 
etc. 

• Defect density estimation: ROBUST (CSU). 

• Coverage-based reliability modeling: ROBUST (CSU) 

• Markov reliability evaluation: HARP (NASA), HiRel (NASA),  PC Availability 
(Management Sciences) etc. 
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