2D Fourier, Scale, and Cross-correlation

CS 510 Lecture #12 February 26th, 2014

Where are we?

- We can detect objects, but they can only differ in translation and 2D rotation
- Then we introduced Fourier analysis.
- Why?
 - Because Fourier analysis can help us with scale
 - Because Fourier analysis can make correlation faster

Review: Discrete Fourier Transform

- Problem: an image is not an analogue signal that we can integrate.
- Therefore for $0 \le x \le N$ and $0 \le u \le N/2$:

$$F(u) = \sum_{x=0}^{N-1} f(x) \left[\cos\left(\frac{2\pi u x}{N}\right) - i \sin\left(\frac{2\pi u x}{N}\right) \right]$$

And the discrete inverse transform is:

$$f(x) = \frac{1}{N} \sum_{x=0}^{N-1} F(u) \left[\cos\left(\frac{2\pi ux}{N}\right) + i \sin\left(\frac{2\pi ux}{N}\right) \right]$$

Colorado State University
3/2/14

2D Fourier Transform

- So far, we have looked only at 1D signals
- For 2D signals, the continuous generalization is: $F(u,v) \equiv \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \Big[\cos(2\pi(ux+vy)) - i\sin(2\pi(ux+vy)) \Big]$
- Note that frequencies are now twodimensional

- u= freq in x, v = freq in y

• Every frequency (u,v) has a real and an imaginary component.

2D sine waves

- This looks like you'd expect in 2D
- Note that the frequencies don't have to be equal in the two dimensions.

http://images.google.com/imgres?imgurl=http://developer.nvidia.com/dev_content/cg/cg_examples/images/ sine_wave_perturbation_ogl.jpg&imgrefurl=http://developer.nvidia.com/object/

cg_effects_explained.html&usg=__0FimoxuhWMm59cbwhch0TLwGpQM=&h=350&w=350&sz=13&hl=en&start=8&sig2=dBEtH0hp511BExgkXAe_kg&tbnid=fc_____ yrlaatfp0P3M:&tbnh=120&tbnw=120&ei=llCYSbLNL4miMoOwoP8L&prev=/images%3Fq%3D2D%2Bsine%2Bwave%26gbv%3D2%26hl%3Den%26sa%3DG

> CS 510, Imag- Computation, C Beveridge & Bruce Drape

2D Discrete Fourier Transform

$$F(u,v) = \sum_{x=-N/2}^{N/2} \sum_{y=-N/2}^{N/2} f(x,y) \left[\cos\left(\frac{2\pi}{N}(ux+vy)\right) - i\sin\left(\frac{2\pi}{N}(ux+vy)\right) \right]$$

- What happened to the bounds on x & y?
- How big is the discrete 2D frequency space representation?

2D Frequency Space

- Remember that:
 - Cosine is an even function: cos(x) = cos(-x)
 - Sine is an odd function: sin(x) = -sin(-x)
- So

$$-F(u,v) = a+ib \Rightarrow F(-u, -v) = a-ib$$

And

$$-F(-u,v) = a+ib \Rightarrow F(u, -v) = a-ib$$

• But

$$-F(u,v) = a+ib \Rightarrow F(-u, v) = ???$$

2D Frequency Space (cont)

- Size of 2D Frequency representation:
 - One dimension must vary from –N/2 to N/2, while the other varies from 0 to N/2
 - Doesn't matter which is which
 - -N * (N/2) * 2 values per frequency = N^2
 - Same as the source spatial representation

Showing Frequency Space

- To display a frequency space:
 - We plot it from -N/2 to N/2 in both dimensions
 - The result is symmetric about the origin (and therefore redundant)
 - We can't plot a complex number, so we show the magnitude at every pixel sqrt(a² + b²)
 - Thus discarding the phase information
 - Phase plots are also possible (tan⁻¹(b/a))

Showing Frequency Space

http://www.brainflux.org/java/classes/FFT2DApplet.html

- Reason 1: Fast Correlation
- Reason 2: Scale

Review: Convolution

We arrive at the fundamental idea of convolution.

"Slide" a mask over an image. At each window position, multiply the mask values by the image value under them.

Sum the results for every pixel.

Think of this as a sliding dot product

3/2/14

Convolution (cont.)

- Why return to convolution after introducing the Fourier Transform?
- Because multiplying two signals in the frequency domain is the same as convolving them in the spatial domain! (trust me)

Computing Cross-Correlation

- In cross-correlation, the mask is convolved with the target image
 - zero-mean & unit length the mask
 - zero-mean & unit length the image
 - Convolve the image and mask

Fast correlation

- If we compute correlation in the spatial domain, the cost is O(nm), where n > m.
- What if we use the frequency domain?
 - Convolution becomes point-wise multiplication
 - Convert to frequencies: O(n log n)
 - Point-wise multiply: O(n)
 - Convert back to spatial: O(n log n)
- Frequency domain is faster if log(n) < m

Fast correlation (II)

- Is spatial convolution really the same as frequency point-wise multiplication?
- Yes, but...
 - Take the complex conjugate of the mask
 - Images must be the same size
 - Pad mask with zeroes
 - Doesn't change the overall complexity
 - What happens at the image edges?
 - Frequency domain repeats
 - Values off the source image aren't zero
 - Equivalent to convolution on a torus

Fourier Correlation

- Simple convolution, not Pearson's correlation
 - The template can be zero mean & unit length
 - But the image windows won't be
- No 2D rotation
- But fast! O(n log(n))

Using Fourier Correlation

- Generate multiple templates at different rotations
- Pad to image size
- Multiply with target in frequency domain
- Find peak in spatial domain
 - Not true correlation
 - Only rough rotation
 - But fast
- Perform true rotation & correlation at peaks

- Reason 1: Fast Correlation
- Reason 2: Scale

Reminder...

$$g(x) = a_1 \cos(f_1 x) + b_1 \sin(f_1 x) + a_2 \cos(f_2 x) + b_2 \sin(f_2 x) + a_3 \cos(f_3 x) + b_3 \sin(f_3 x) + \cdots$$

 Signal is reconstructed as a series of sine and cosine waves

Review: Fourier Magnitude & Phase

• The <u>energy</u> at a frequency is:

$$F(u) = \sqrt{R^2(u) + I^2(u)}$$

• The phase at a frequency is:

$$\tan^{-1}(u) = \frac{I(u)}{R(u)}$$
Colorado State University

3/2/14
CS 510, Image Colorado State University

Beveridge & Bruce Draper

21

The Nyquist Rate

• What if the frequency is above N/2?

CS 510, Imag

3/2/14

- You have fewer than one sample per halfcycle
- High frequencies look like lower frequencies

Beveridge & Bruce Drape

Aliasing – Another View

Low-Pass Filtering 101

• Drop high frequency Fourier coefficients.

2D Fourier Applet

3/2/14

To low-pass filter an image:
1) convert to frequency domain
2) discard all values for u > thresh
3) Convert back to spatial domain

Brainflux Fourier Applet

http://www.brainflux.org/java/classes/FFT2DApplet.html

Colorado State University

But is there an easier way? A more efficient way?

Alternatively, convolve with a Gaussian.

CS 510, Image

Beveridge & Bruce Drape

Photoshop Gaussian Blur

 SmoothingE SmoothingE SmoothingE 	xampleFace.psd @ 100 Gaussian Blur OK Cancel Preview Radius: 4.0 pixels
3/2/14	Colorado State University CS 510, Image Computation, CROSS Beveridge & Bruce Draper

Low-Pass Filter

- Low-Pass filter multiply by a pulse in frequency space, or
- Convolve the image with the inverse Fourier transform of a pulse...

The Gibbs Phenomenon (ringing)

- The truncated sinc is no longer a pulse in frequency space
 - passes small amounts of some high frequencies
 - passes acceptable frequencies in uneven amounts
 - may create negative values in unusual circumstances

Alternative Filters

pulse/sinc

triangle/sinc²

gaussian/gaussian

Image Reductions

- Anytime the target image has a lower resolution than the source image, prevent frequency aliasing by low-pass filtering.
 - In practice, convolve with a Gaussian
 - Determine Nyquist rate for target image
 - $\frac{1}{2}$ width and $\frac{1}{2}$ height
 - Select σ
 - Convolve source image with $g(\sigma)$
 - Apply geometric transformation to result

Image Reductions (II)

- Example: reduce 1Kx1K to 800x800 pixels
 - Select one (source) pixel as unit length
 - The Nyquist rate for source is 0.5 cycles/s_pixel
 - Nyquist rate for target is 0.4 cycles/s_pixel
- Problem: Gaussian is not a strict cut-off
 - Select "pass" value (2σ sounds good)
 - Select mask width to cover "most" of the area under the Gaussian curve
 - recommend 5σ (source: Trucco & Verri)
 - Covers 98.75% of the area under the Gaussian

Image Reduction (III)

- So 2σ is 0.4 cycles/pixel
 - The Fourier transform of $g(x, \sigma)$ is $g(\omega, 1/\sigma)$
 - The inverse of 0.4 cycles/pixel is 2.5 pixels/cycle
 - -2σ = 2.5 pixels/cycle
 - $-\sigma$ = 1.25 pixels/cycle
 - (T&V): To include 5σ of the curve, $\sigma = w/5$,
 - w is the width of the mask
 - W = 6.25
- Create a 7x7 Gaussian mask with sigma 1.25
 - w should be odd, so don't use 6x6
 - Why make w odd? To avoid a geometric transformation...
- Smooth the image using this mask, then subsample.

Image Transformation

- What if we want to keep 1Kx1K size?
 - Target Nyquist rate is 0.5 cycles/pixel
 - In image space, $2\sigma = 2 \text{ pixels/cycle}$, so $\sigma=1$
 - $-\sigma = w/5$, so w = 5
 - Create a 5x5 mask with σ =1, smooth source image
 - Transform (rotate, etc.) the result.
- This is why most image processing packages includes predefined 5x5 Gaussian masks
- Other masks you build yourself.

Smoothing with σ =1

Original Image

Image with Gaussian Smoothing, $\sigma = 1.0$

Limits to Gaussians

- The Gaussian mask itself is a discrete sampling of a continuous signal.
- Gaussian signals with sigmas below 0.8 are too small to be sampled at pixel intervals.
- Generally not used for "up-sampling"

Implications of Smoothing

- All of this is based on the view that an image is a sum of sine waves.
- Physically, this assumption is absurd
 - Think of a ray tracer -- where would sine waves (or repeating signals) come from?
 - Occlusion edges lead to non-differentiable jumps
 - the signal content on the two sides are unrelated
 - violates the differentiability assumption underlying Fourier analysis
 - Edges are therefore very high frequency;
 - G(x, σ =1) blurs the image
- Fourier analysis does describe the limitations of A/D conversion, and therefore of image manipulation

