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\Where are we?

* We can detect objects, but they can only
differ in translation and 2D rotation

* Then we introduced Fourier analysis.
* Why?

— Because Fourier analysis can help us with
scale

— Because Fourier analysis can make
correlation faster




Review: Discrete Fourier Transform

* Problem: an image is not an analogue
signal that we can integrate.

* Therefore forO = x <N and 0 = u <N/2:

A l (Zme) (thx )}
f(x)|cos —isin
x=0 N

And the discrete inverse transform is:

E [cos(zm)ﬂsm(”;”)}
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2D Fourier Transform

« So far, we have looked only at 1D signals
» For 2D signals, the continuous generalization
IS: .
F(u,v)sfff(x,y)[cos(Zn(ux+vy))—isin(2n(ux+vy))]

—00 —00

* Note that frequencies are now two-
dimensional

—u=freqinx,v="freqiny
« Every frequency (u,v) has a real and an
Imaginary component.




2D sine waves
* This looks like you'd expect in 2D

» Note that the
frequencies don’t have
to be equal in the two
dimensions.
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2D Discrete Fourier
Transform

N/2 N/2

Fu)= S S fxy[COS(ZJ\JJI(ux+vy))—181n(2]i;(ux+vy))]

x==N/2y=-N/2

* What happened to the bounds on x & y?

* How big is the discrete 2D frequency
space representation?




2D Frequency Space

« Remember that:

— Cosine is an even function: cos(x) = cos(-x)
— Sine is an odd function: sin(x) = -sin(-x)

e SO

— F(u,v) = a+ib = F(-u

 And

— F(-u,v) = a+ib = F(u,

 But

-v) = a-ib

-v) = a-ib

— F(u,v) = a+ib = F(-u, v) = ??7?
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2D Frequency Space (cont)

« Size of 2D Frequency representation:

— One dimension must vary from —N/2 to N/2,
while the other varies from 0 to N/2

* Doesn’t matter which is which
— N * (N/2) * 2 values per frequency = N2
— Same as the source spatial representation




Showing Frequency Space

* To display a frequency space:
— We plot it from —N/2 to N/2 in both dimensions

— The result is symmetric about the origin (and
therefore redundant)

— We can’t plot a complex number, so we show
the magnitude at every pixel sqgrt(a? + b?)
* Thus discarding the phase information
* Phase plots are also possible (tan-'(b/a))
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Showing Frequency Space

2D Fourier Applet

Tool
NIC AT
l Size ;-. l—'”““l
http://www.brainflux.org/java/classes/FFT2DApplet.html
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But Why"?

« Reason 1: Fast Correlation

e Reason 2: Scale
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Review: Convolution

We arrive at the fundamental idea of convolution.

“Slide” a mask over an image. At each window position, multiply
the mask values by the image value under them.

Sum the results
for every pixel.

Think of this
as a sliding
dot product
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Convolution (cont.)

* Why return to convolution after introducing
the Fourier Transform?

* Because multiplying two signals in the
frequency domain is the same as
convolving them in the spatial domain!
(trust me)




Computing Cross-Correlation

* In cross-correlation, the mask is convolved
with the target image

— zero-mean & unit length the mask
— zero-mean & unit length the image
— Convolve the image and mask




Fast correlation

* If we compute correlation in the spatial
domain, the cost is O(hm), where n > m.
* What if we use the frequency domain?
— Convolution becomes point-wise multiplication
— Convert to frequencies: O(n log n)
— Point-wise multiply: O(n)
— Convert back to spatial: O(n log n)
* Frequency domain is faster if log(n) <m
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Fast correlation (ll)

* |s spatial convolution really the same as
frequency point-wise multiplication?

* Yes, but...

— Take the complex conjugate of the mask

— Images must be the same size
 Pad mask with zeroes
« Doesn’t change the overall complexity
— What happens at the image edges”?
* Frequency domain repeats

« Values off the source image aren’t zero
« Equivalent to convolution on a torus
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Fourier Correlation

« Simple convolution, not Pearson’s
correlation

— The template can be zero mean & unit length
— But the image windows won't be

 No 2D rotation

« But fast! O(n log(n))




Using Fourier Correlation

Generate multiple templates at different
rotations

Pad to image size
Multiply with target in frequency domain

Find peak in spatial domain
— Not true correlation

— Only rough rotation

— But fast

» Perform true rotation & correlation at peaks
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But Why"?

« Reason 1: Fast Correlation

e Reason 2: Scale
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Reminder...

g(x)=aq, cos[flx) + b, sin(flx)
+a, COS [ fzx) +D, sin( fzx)
+a, cos( f3x) + D, sin( f3x)

+...

» Signal is reconstructed as a series of sine
and cosine waves




Review: Fourier Magnitude &

Phase
* The energy at a frequency is:

‘F(u)( = \/R2 (u)+ I’ (u)

* The phase at a frequency is:

tan™" (u) = ;((Z))
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The Nyquist Rate

« What if the frequency is above N/27?

— You have fewer than one sample per half-
cycle

— High frequencies look like lower frequencies
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Aliasing — Another View

15n/16) o

Basis Munction
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Low-Pass Filtering 101

* Drop high frequency Fourier coefficients.

To low-pass filter an image:

1) convert to frequency domain

2) discard all values for u > thresh
3) Convert back to spatial domain

Tool

IR
| sao - ml

Brainflux Fourier Applet

2D Fourier Applet

http://www.brainflux.org/java/classes/FFT2DApplet.html

But 1s there an easier way?
A more efficient way?



Photoshop Gaussian Blur

@ O O =» smoothingExampleFace.psd @ 100...

o

| Preview
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Low-Pass Filter
» Low-Pass filter - multiply by a pulse in
frequency space, or

« Convolve the image with the inverse
Fourier transform of a pulse...

Sinc filter

Truncated sinc

Graphic from “Computer Graphics:Princip b5 am
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The Gibbs Phenomenon
(ringing)
* The truncated sinc is no longer a pulse in

frequency space

— passes small amounts of some high
frequencies

— passes acceptable frequencies in uneven
amounts

— may create negative values in unusual
circumstances




Alternative Filters

— . : )
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Image Reductions

* Anytime the target image has a lower
resolution than the source image, prevent
frequency aliasing by low-pass filtering.

— |In practice, convolve with a Gaussian

— Determine Nyquist rate for target image
* /2 width and 72 height

— Select o

— Convolve source image with g(o)
— Apply geometric transformation to result




Image Reductions (ll)

 Example: reduce 1Kx1K to 800x800 pixels
— Select one (source) pixel as unit length
— The Nyquist rate for source is 0.5 cycles/s_pixel
— Nyquist rate for target is 0.4 cycles/s_pixel

 Problem: Gaussian is not a strict cut-off
— Select “pass” value (20 sounds good)

— Select mask width to cover “most” of the area
under the Gaussian curve

* recommend 5o (source: Trucco & Verri)
» Covers 98.75% of the area under the Gaussian
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Image Reduction (lll)
— S0 20 is 0.4 cycles/pixel

« The Fourier transform of g(x, o) is g(w, 1/ o)

 The inverse of 0.4 cycles/pixel is 2.5 pixels/cycle
— 20 = 2.5 pixels/cycle
— o = 1.25 pixels/cycle

 (T&V): To include 50 of the curve, o = w/5,
— w is the width of the mask
- W=6.25
— Create a 7x7 Gaussian mask with sigma 1.25
* w should be odd, so don't use 6x6
— Why make w odd? To avoid a geometric transformation...
— Smooth the image using this mask, then
subsample.

i Loy ®J
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Image Transformation

* What if we want to keep 1Kx1K size?
— Target Nyquist rate is 0.5 cycles/pixel
— In image space, 2o = 2 pixels/cycle, so 0=1
—o=w/5,sow=5
— Create a 5x5 mask with 6=1, smooth source image
— Transform (rotate, etc.) the result.

* This is why most image processing packages
iIncludes predefined 5x5 Gaussian masks

» Other masks you build yourself.

e—
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Smoothing with o=1

A

Original Image Image with Gaussian
Smoothing, 6 =1.0




Limits to Gaussians

* The Gaussian mask itself is a discrete
sampling of a continuous signal.

« Gaussian signals with sigmas below 0.8
are too small to be sampled at pixel
intervals.

* Generally not used for “up-sampling”




Implications of Smoothing

All of this is based on the view that an image is a sum of sine waves.
Physically, this assumption is absurd

— Think of a ray tracer -- where would sine waves (or repeating
signals) come from?

— Occlusion edges lead to non-differentiable jumps
* the signal content on the two sides are unrelated

* violates the differentiability assumption underlying Fourier
analysis

— Edges are therefore very high frequency;
* G(x, 0=1) blurs the image

Fourier analysis does describe the limitations of A/D conversion, and
therefore of image manipulation
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