
2D Fourier, Scale, and 
Cross-correlation 

CS 510  
Lecture #12 

February 26th, 2014 



Where are we? 
•  We can detect objects, but they can only 

differ in translation and 2D rotation 
•  Then we introduced Fourier analysis. 
•  Why? 

– Because Fourier analysis can help us with 
scale 

– Because Fourier analysis can make 
correlation faster 



Review: Discrete Fourier Transform 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   3	  

•  Problem: an image is not an analogue 
signal that we can integrate.  

•  Therefore for 0 ≤ x < N and 0 ≤ u <N/2: 

€ 

F u( ) = f x( ) cos
2πux
N

# 

$ 
% 

& 

' 
( − i sin

2πux
N

# 

$ 
% 

& 

' 
( 

* 

+ 
, 

- 

. 
/ 

x=0

N−1

∑

€ 

f x( ) =
1
N

F u( ) cos
2πux
N

# 

$ 
% 

& 

' 
( + i sin

2πux
N

# 

$ 
% 

& 

' 
( 

) 

* 
+ 

, 

- 
. 

x=0

N−1

∑

And	  the	  discrete	  inverse	  transform	  is:	  



2D Fourier Transform 
•  So far, we have looked only at 1D signals 
•  For 2D signals, the continuous generalization 

is: 

•  Note that frequencies are now two-
dimensional 
–  u= freq in x, v = freq in y 

•  Every frequency (u,v) has a real and an 
imaginary component. 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   4	  

€ 

F u,v( ) ≡ f x, y( ) cos 2π ux+ vy( )( )− i sin 2π ux+ vy( )( )[ ]
−∞

∞

∫
−∞

∞

∫



2D sine waves 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   5	  

•   This looks like you’d expect in 2D 

hFp://images.google.com/imgres?imgurl=hFp://developer.nvidia.com/dev_content/cg/cg_examples/images/
sine_wave_perturba5on_ogl.jpg&imgrefurl=hFp://developer.nvidia.com/object/
cg_effects_explained.html&usg=__0FimoxuhWMm59cbwhch0TLwGpQM=&h=350&w=350&sz=13&hl=en&start=8&sig2=dBEtH0hp5I1BExgkXAe_kg&tbnid=fc
yrIaa`p0P3M:&tbnh=120&tbnw=120&ei=llCYSbLNL4miMoOwoP8L&prev=/images%3Fq%3D2D%2Bsine%2Bwave%26gbv%3D2%26hl%3Den%26sa%3DG	  

Ø  Note	  that	  the	  
frequencies	  don’t	  have	  
to	  be	  equal	  in	  the	  two	  
dimensions.	  



2D Discrete Fourier 
Transform 

•  What happened to the bounds on x & y? 
•  How big is the discrete 2D frequency 

space representation? 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   6	  

€ 

F u,v( ) = f x, y( ) cos 2π
N

ux+ vy( )
# 

$ 
% 

& 

' 
( − i sin

2π
N

ux+ vy( )
# 

$ 
% 

& 

' 
( 

* 

+ 
, 

- 

. 
/ 

y=−N /2

N /2

∑
x=−N /2

N /2

∑



2D Frequency Space  
•  Remember that: 

– Cosine is an even function: cos(x) = cos(-x) 
– Sine is an odd function: sin(x) = -sin(-x) 

•  So  
– F(u,v) = a+ib ⇒ F(-u, -v) = a-ib 

•  And  
– F(-u,v) = a+ib ⇒ F(u, -v) = a-ib 

•  But 
– F(u,v) = a+ib ⇒ F(-u, v) = ???  

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   7	  



2D Frequency Space (cont) 

•  Size of 2D Frequency representation: 
– One dimension must vary from –N/2 to N/2, 

while the other varies from 0 to N/2 
•  Doesn’t matter which is which 

– N * (N/2) * 2 values per frequency = N2 

– Same as the source spatial representation 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   8	  



Showing Frequency Space 

•  To display a frequency space: 
– We plot it from –N/2 to N/2 in both dimensions 
– The result is symmetric about the origin (and 

therefore redundant) 
– We can’t plot a complex number, so we show 

the magnitude at every pixel sqrt(a2 + b2) 
•  Thus discarding the phase information 
•  Phase plots are also possible (tan-1(b/a)) 

3/2/14 9	  CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	  



Showing Frequency Space 

3/2/14 

http://www.brainflux.org/java/classes/FFT2DApplet.html	


10	  CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	  



But Why? 

•  Reason 1: Fast Correlation 

•  Reason 2: Scale 



Review: Convolution 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   12	  

“Slide” a mask over an image.  At each window position, multiply  
the mask values by the image value under them. 
Sum the results 
for every pixel.  

Think of this 
as a sliding 
dot product 

We	  arrive	  at	  the	  fundamental	  idea	  of	  convolu5on.	  



Convolution (cont.) 

•  Why return to convolution after introducing 
the Fourier Transform? 

•  Because multiplying two signals in the 
frequency domain is the same as 
convolving them in the spatial domain! 
(trust me) 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   13	  



Computing Cross-Correlation 
•  In cross-correlation, the mask is convolved 

with the target image 
– zero-mean & unit length the mask 
– zero-mean & unit length the image 
– Convolve the image and mask 



Fast correlation 
•  If we compute correlation in the spatial 

domain, the cost is O(nm), where n > m.  
•  What if we use the frequency domain? 

– Convolution becomes point-wise multiplication 
– Convert to frequencies: O(n log n) 
– Point-wise multiply: O(n) 
– Convert back to spatial: O(n log n) 

•  Frequency domain is faster if log(n) < m 



Fast correlation (II) 
•  Is spatial convolution really the same as 

frequency point-wise multiplication? 
•  Yes, but… 

– Take the complex conjugate of the mask 
–  Images must be the same size 

•  Pad mask with zeroes 
•  Doesn’t change the overall complexity 

– What happens at the image edges? 
•  Frequency domain repeats 
•  Values off the source image aren’t zero 
•  Equivalent to convolution on a torus  



Fourier Correlation 

•  Simple convolution, not Pearson’s 
correlation 
– The template can be zero mean & unit length 
– But the image windows won’t be 

•  No 2D rotation 
•  But fast! O(n log(n)) 



Using Fourier Correlation 
•  Generate multiple templates at different 

rotations 
•  Pad to image size 
•  Multiply with target in frequency domain 
•  Find peak in spatial domain 

– Not true correlation 
– Only rough rotation 
– But fast 

•  Perform true rotation & correlation at peaks 



But Why? 

•  Reason 1: Fast Correlation 

•  Reason 2: Scale 



Reminder… 

•  Signal is reconstructed as a series of sine 
and cosine waves 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   20	  

  

€ 

g x( ) = a1 cos f1x( ) + b1 sin f1x( )
+a2 cos f2x( ) + b2 sin f2x( )
+a3 cos f3x( ) + b3 sin f3x( )
+



Review: Fourier Magnitude & 
Phase 
•  The energy at a frequency is: 

•  The phase at a frequency is: 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   21	  

€ 

F u( ) = R2 u( )+ I 2(u)

€ 

tan−1 u( )=
I u( )
R u( )



The Nyquist Rate 
•  What if the frequency is above N/2? 

– You have fewer than one sample per half-
cycle 

– High frequencies look like lower frequencies  

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   22	  

Graphic	  from	  “Computer Graphics:Principles and Practice”  by Foley, van Dam, Feiner & Hughes.	  	  



Aliasing – Another View 

3/2/14 CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   23	  



Low-Pass Filtering 101 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   24	  

•  Drop high frequency Fourier coefficients. 
To low-pass filter an image: 
1) convert to frequency domain 
2) discard all values for u > thresh 
3) Convert back to spatial domain 
 

Brainflux	  Fourier	  Applet	  
http://www.brainflux.org/java/classes/FFT2DApplet.html	


But is there an easier way? 
A more efficient way? 

Ø  Alterna5vely,	  convolve	  with	  a	  Gaussian.	  



Photoshop Gaussian Blur 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   25	  



Low-Pass Filter 
•  Low-Pass filter - multiply by a pulse in 

frequency space, or 
•  Convolve the image with the inverse 

Fourier transform of a pulse... 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   26	  

Sinc filter 

Truncated sinc 

Graphic	  from	  “Computer Graphics:Principles and Practice”  by Foley, van Dam, Feiner & Hughes.	  	  



The Gibbs Phenomenon 
(ringing) 
•  The truncated sinc is no longer a pulse in 

frequency space 
– passes small amounts of some high 

frequencies 
– passes acceptable frequencies in uneven 

amounts 
– may create negative values in unusual 

circumstances  

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   27	  



Alternative Filters 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   28	  

pulse/sinc 

triangle/sinc2 

gaussian/gaussian 

Graphic	  from	  “Computer Graphics:Principles and Practice”  by Foley, van Dam, Feiner & Hughes.	  	  



Image Reductions 
•  Anytime the target image has a lower 

resolution than the source image, prevent 
frequency aliasing by low-pass filtering. 
–   In practice, convolve with a Gaussian 
–   Determine Nyquist rate for target image 

•  ½ width and ½ height 
–   Select σ 
–   Convolve source image with g(σ) 
–   Apply geometric transformation to result 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   29	  



Image Reductions (II) 
•  Example: reduce 1Kx1K to 800x800 pixels 

–   Select one (source) pixel as unit length 
–   The Nyquist rate for source is 0.5 cycles/s_pixel 
–   Nyquist rate for target is 0.4 cycles/s_pixel 

•   Problem: Gaussian is not a strict cut-off 
– Select “pass” value (2σ sounds good) 
– Select mask width to cover “most” of the area 

under the Gaussian curve  
•  recommend 5σ (source: Trucco & Verri) 
•  Covers 98.75% of the area under the Gaussian 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   30	  



Image Reduction (III) 
–   So 2σ is 0.4 cycles/pixel  

•    The Fourier transform of g(x, σ) is g(ω, 1/ σ) 
•    The inverse of 0.4 cycles/pixel is 2.5 pixels/cycle 

–  2σ = 2.5 pixels/cycle 
–  σ = 1.25 pixels/cycle 

•    (T&V): To include 5σ of the curve,  σ = w/5,  
–  w is the width of the mask 
–  W = 6.25 

– Create a 7x7 Gaussian mask with sigma 1.25 
•   w should be odd, so don’t use 6x6  

–  Why make w odd? To avoid a geometric transformation… 

– Smooth the image using this mask, then 
subsample. 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   31	  



Image Transformation 
•  What if we want to keep 1Kx1K size? 

– Target Nyquist rate is 0.5 cycles/pixel 
–  In image space, 2σ = 2 pixels/cycle, so σ=1 
– σ = w/5, so w = 5 
– Create a 5x5 mask with σ=1, smooth source image 
– Transform (rotate, etc.) the result. 

•  This is why most image processing packages 
includes predefined 5x5 Gaussian masks 

•  Other masks you build yourself. 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   32	  



Smoothing with σ=1 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   33	  

Original Image Image with Gaussian 
Smoothing, σ = 1.0  



Limits to Gaussians 

•  The Gaussian mask itself is a discrete 
sampling of a continuous signal. 

•  Gaussian signals with sigmas below 0.8 
are too small to be sampled at pixel 
intervals. 

•  Generally not used for “up-sampling” 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   34	  



Implications of Smoothing 
•  All of this is based on the view that an image is a sum of sine waves. 
•  Physically, this assumption is absurd 

–  Think of a ray tracer -- where would sine waves (or repeating 
signals) come from? 

–  Occlusion edges lead to non-differentiable jumps 
•  the signal content on the two sides are unrelated 
•  violates the differentiability assumption underlying Fourier 

analysis 
–   Edges are therefore very high frequency;  

•  G(x, σ=1) blurs the image 
•  Fourier analysis does describe the limitations of A/D conversion, and 

therefore of image manipulation 

3/2/14	   CS	  510,	  Image	  Computa5on,	  ©Ross	  
Beveridge	  &	  Bruce	  Draper	   35	  


