The Structure Tensor (or, a gentle intro to PCA)

Lecture #09 February 12th, 2014

Review: Edges

- Convolution with an edge mask estimates the partial derivatives of the image surface.
- The Sobel edge masks are:

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$Dx$$

$$Dy$$

niversity

CS 510, Image Computation, St Beveridge & Bruce Draper

Using Dx & Dy (Review)

- Convolution produces two images
 - One of partial derivatives in dl/dx
 - One of partial derivatives in dl/dy
- At any pixel (x,y):

$$EdgeMagnitude(x,y) = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2}$$

$$EdgeOrientation(x,y) = tan^{-1} \begin{pmatrix} \frac{\partial I}{\partial y} \\ \frac{\partial I}{\partial x} \end{pmatrix}$$

Rotation-Free Correlation

- Pre-process: center the template on an edge
- For every Image window:
 - Measure the direction of the edge at the center pixel
 - Rotate the template until its center pixel has the same orientation
 - Correlate the template & image window

Rotation-Free Correlation (II)

- Use different template orientation at every position
 - At least bilinear interpolation
- Skip positions with no edge
 - i.e. mag ≈ 0

Problem: edge accuracy

- The orientation of an edge may not be accurate
 - Occlusion
 - Surface marking (smudge)
 - Electronic noise
- Solution: compute dominant edge orientation over a window

Example

Computing Edge Orientation Dominance

- How do we determine the dominant orientation from a set of [dx, dy] vectors?
- Fit the line that best fits the (dx, dy) points
- Represent edges as a matrix:

$$G = \begin{bmatrix} \frac{\partial I}{\partial x_1} & \frac{\partial I}{\partial x_2} & \dots & \frac{\partial I}{\partial x_n} \\ \frac{\partial I}{\partial y_1} & \frac{\partial I}{\partial y_2} & \dots & \frac{\partial I}{\partial y_n} \end{bmatrix}$$

A general solution...

- Mean center the edge data
- Fit a line the minimizes the squared perpendicular distances

Edge Covariance

Compute the outer product of G with itself:

$$Cov = GG^{T} = \begin{bmatrix} dx_1 & dx_2 & \cdots & dx_n \\ dy_1 & dy_2 & \cdots & dy_n \end{bmatrix} \begin{bmatrix} dx_1 & dy_1 \\ dx_2 & dy_2 \\ \vdots & \vdots \\ dx_n & dy_n \end{bmatrix} = \begin{bmatrix} \sum_{i} dx_i^2 & \sum_{i} dx_i dy_i \\ \sum_{i} dx_i dy_i & \sum_{i} dy_i^2 \end{bmatrix}$$

- This matrix is called the structure tensor
- What is the semantics of the structure tensor?

Covariance

 Covariance is a measure of whether two signal are linearly related

$$Cov(A,B) = \sum (A_i - \overline{A})(B_i - \overline{B})$$

- Note that this is correlation without normalization
- It predicts the linear relationship between the signals
 - i.e. it can be used to fit a line to them

Edge Covariance

- The structure tensor is the covariance matrix of the partial derivatives
 - It tells you the linear relation between the dx and dy values
 - If all the orientations are the same, then dx predicts dy (and vice versa)
 - If the orientations are random, dx has no relation to dy.

Introduction to Principal Components Analysis (PCA)

We can solve the following:

$$GG^T = R^{-1}\lambda R$$

- Where R is an orthonormal (rotation)
 matrix and λ is a diagonal matrix with
 descending values
- What do R and λ tell us?

Eigenvalues and Eigenvectors

- R is a rotation matrix
 - Its rows are axes of a new basis
 - The 1st row (eigenvector) is the best fit direction
 - i.e. the direction of greatest covariance
 - The 2nd eigenvector is orthogonal to the 1st.
- λ contains the eigenvalues
 - The eigenvalues are the <u>covariance</u> in the directions of the new bases
- The closed form equation simply computed the cosine of the first eigenvector

The Structure Tensor

 The structure tensor is the outer product of the partial derivatives with themselves:

$$C = \begin{bmatrix} \sum_{i} dx_{i}^{2} & \sum_{i} dx_{i} dy_{i} \\ \sum_{i} dx_{i} dy_{i} & \sum_{i} dy_{i}^{2} \end{bmatrix}$$

- Consider the Eigenvalues
 - Both near zero => no edge (image is locally flat)
 - One large, one near zero => edge
 - Both large => a strong corner

Back to Rotation-Free Correlation

- For every source window:
 - Calculate the edge covariance matrix
 - Find the first eigenvector
 - Skip if 1st eigenvalue is too small
 - Rotate the template to match
 - Correlate

Structure Tensor Eigenvalues

- The structure tensor summarizes the edge information in an image window
- If both eigenvalues are small, the window is a roughly flat surface
 - Not good for matching, good for grouping
- If one eigenvalue is small, the window contains an edge
 - Orientation is reliable
 - Position of match is not (aperture effect)
- If both eigenvalues are larg, the window contains a corner
 - Orientation is one of two
 - Position matches are reliable (good points to match)

om 2 Images

CS 510, Image Computation, SRoss Beveridge & Bruce Draper