
The Structure Tensor 
(or, a gentle intro to PCA) 

Lecture #09 
February 12th, 2014 



Review: Edges  
•  Convolution with an edge mask estimates 

the partial derivatives of the image surface. 
•  The Sobel edge masks are: 
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Using Dx & Dy (Review) 
•  Convolution produces two images 

– One of partial derivatives in dI/dx 
– One of partial derivatives in dI/dy 

•  At any pixel (x,y): 
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Rotation-Free Correlation  

•  Pre-process: center the template on an 
edge 

•  For every Image window: 
– Measure the direction of the edge at the 

center pixel 
– Rotate the template until its center pixel has 

the same orientation 
– Correlate the template & image window 
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Rotation-Free Correlation (II) 
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•  Use different template 
orientation at every 
position 
•  At least bilinear 

interpolation 
•  Skip positions with no 

edge 
•  i.e. mag ≈ 0  



Problem: edge accuracy 

•  The orientation of an edge may not be 
accurate 
– Occlusion 
– Surface marking (smudge) 
– Electronic noise 

•  Solution: compute dominant edge 
orientation over a window 
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Example 

5x5 Window 
Edges 

Dx, Dy Plot 

dx 

dy 
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Computing Edge Orientation 
Dominance 
•  How do we determine the dominant 

orientation from a set of [dx, dy] vectors? 
•  Fit the line that best fits the (dx, dy) points 
•  Represent edges as a matrix: 
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A general solution… 

•  Mean center the 
edge data 

•  Fit a line the 
minimizes the 
squared 
perpendicular 
distances 
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Dx, Dy Plot 
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Edge Covariance 

•  Compute the outer product of G with itself: 

•  This matrix is called the structure tensor  
•  What is the semantics of the structure 

tensor? 
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Covariance 
•  Covariance is a measure of whether two 

signal are linearly related 

•  Note that this is correlation without 
normalization 

•  It predicts the linear relationship between 
the signals 
–  i.e. it can be used to fit a line to them 
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Edge Covariance 

•  The structure tensor is the covariance 
matrix of the partial derivatives 
–  It tells you the linear relation between the dx 

and dy values 
–  If all the orientations are the same, then dx 

predicts dy (and vice versa) 
–  If the orientations are random, dx has no 

relation to dy. 
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Introduction to Principal 
Components Analysis (PCA) 
•  We can solve the following: 

•  Where R is an orthonormal (rotation) 
matrix and λ is a diagonal matrix with 
descending values 

•  What do R and λ tell us? 
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Eigenvalues and Eigenvectors 
•  R is a rotation matrix 

–  Its rows are axes of a new basis 
– The 1st row (eigenvector) is the best fit direction 

•  i.e. the direction of greatest covariance 
– The 2nd eigenvector is orthogonal to the 1st. 

•  λ contains the eigenvalues 
– The eigenvalues are the covariance in the 

directions of the new bases 
•  The closed form equation simply computed 

the cosine of the first eigenvector 
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The Structure Tensor 
•  The structure tensor is the outer product of 

the partial derivatives with themselves: 

•  Consider the Eigenvalues 
– Both near zero => no edge (image is locally flat) 
– One large, one near zero => edge  
– Both large => a strong corner 
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Back to Rotation-Free Correlation 

•  For every source 
window: 
– Calculate the edge 

covariance matrix 
– Find the first eigenvector 

•  Skip if 1st eigenvalue is too 
small 

– Rotate the template to 
match 

– Correlate 
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Structure Tensor Eigenvalues 
•  The structure tensor summarizes the edge information 

in an image window 
•  If both eigenvalues are small, the window is a roughly 

flat surface 
–  Not good for matching, good for grouping 

•  If one eigenvalue is small, the window contains an 
edge 
–  Orientation is reliable 
–  Position of match is not (aperture effect) 

•  If both eigenvalues are larg, the window contains a 
corner 
–  Orientation is one of two 
–  Position matches are reliable (good points to match) 
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