Lecture 20:
 All Together with Refraction

November 10, 2020

Translucence

- Some light passes through the material.
- Typically, "passed through" light gets the diffuse reflection properties of the surface, unless object is 100% translucent (i.e. transparent)
- Speed of light is a function of the medium
- This causes light to bend at boundaries
- example: looking at the bottom of a pool

Refraction - With Trigonometry

Key is Snell's law ...

$$
\sin \left(\theta_{t}\right)=\frac{\eta_{i}}{\eta_{t}} \sin \left(\theta_{i}\right)
$$

$\theta_{i} \quad$ Angle of incidence
$\theta_{t} \quad$ Angle of refraction
$\eta_{i} \quad$ Index of refraction material \#1
$\eta_{t} \quad$ Index of refraction material \#2
The refraction ray is:

$$
T=\left(\frac{\eta_{i}}{\eta_{t}} \cos \left(\theta_{i}\right)-\cos \left(\theta_{t}\right)\right) N-\frac{\eta_{i}}{\eta_{t}} W
$$

Practical Refraction: Solids

- When light enters a solid glass object?

More Recursion

- This changes ray tracing from tail-recursion to double-recursion...

Practical Refraction: Surfaces

- What happens as it passes through a solid or surface?

$$
\begin{aligned}
\sin \theta_{1} & =\frac{\eta_{i}}{\eta_{r}} \sin \theta_{i} \\
\sin \theta_{i} & =\frac{\eta_{r}}{\eta_{i}} \sin \theta_{2} \\
\sin \theta_{1} & =\frac{\eta_{i}}{\eta_{r}} \frac{\eta_{r}}{\eta_{i}} \sin \theta_{2} \\
& =\sin \theta_{2}
\end{aligned}
$$

> Overall effect: displacement of the incident vector
Note: this assumes the two surfaces of the solid are coplanar!

Refraction - No Trigonometry.

First Constraint: Snells Law

$$
\begin{gathered}
T=\alpha W+\beta N \\
\sin \left(\theta_{i}\right)^{2} \mu^{2}=\sin \left(\theta_{t}\right)^{2} \quad \mu=\frac{\mu_{i}}{\mu_{t}} \\
\left(1-\cos \left(\theta_{i}\right)^{2}\right) \mu^{2}=1-\cos \left(\theta_{t}\right)^{2} \\
\left(1-(W \cdot N)^{2}\right) \mu^{2}=1-(-N \cdot T)^{2} \\
\left(1-(W \cdot N)^{2}\right) \mu^{2}=1-(-N \cdot(\alpha W+\beta N))^{2}
\end{gathered}
$$

Refraction - No Trigonometry

Second Constraint: Refraction ray is unit length.

$$
\begin{aligned}
T \cdot T & =(\alpha W+\beta N) \cdot(\alpha W+\beta N)=1 \\
& =\alpha^{2}+2 \alpha \beta(W \cdot N)+\beta^{2}=1
\end{aligned}
$$

Two quadratic equations in two unknowns. Solving is a bit involved, ... Here is the answer.

$$
\alpha=-\mu \quad \beta=\mu(W \cdot N)-\sqrt{1-\mu^{2}+\mu^{2}(W \cdot N)^{2}}
$$

A Wonderful Real Example

Yes, refraction typically makes everthing upside down and backwards.

Refraction and Polygons

- It is entirely possible to implement refraction through complex solid models defined by polygons.
- But! Doing so requires the following:
- Models must be complete: no holes!
- All faces (triangles) must be tagged to a solid.
- Needed to find where refraction ray exits the solid.
- There is a simpler special case
- Thin faces with parallel sides (next slide).

Special Case: Thin Faces

- Consider entrance and exit
- The are parallel (see picture)
- Refraction vectors
- Pass through at a shifted angle
- But exit in the same direction
- Result is an offset only
- Offset depends on index of refraction
- Offset depends on the thickness of the face

Building A Scene Example 1

- One semi-transparent sphere with eta 1.0
- View three colored spheres behind.

About Materials

```
class Material :
    def _init__(self, a, d, s, r, o, spow, eta) :
        self.kd = np.array(d)
        self.ks = np.array(s)
        self.kr = np.array(r)
        self.ko = np.array(o)
        self.spow = spow
        self.eta = eta
```

- ka: the red, green and blue coefficients for ambient illumination
- kd: the red, green and blue coefficients for diffuse illumination
- ks: the red, green and blue coefficients for specular illumination
- spow: the exponent used to control the apparent size of specular highlights
- kr: the red, green and blue attenuation for reflection
- ko: the red, greeen and blue opacity of the material
- eta: the index of refraction for the material: 1.0 for air and typically 1.5 for glass

Small Change to Eta

- To see a minor change based upon the index of refraction being set to 1.05 instead of 1.0

A Large Change in Eta

- A bit of graphics science fiction, here is a Germanium sphere with a very high eta.

And a Diamond Sphere

- The index of refraction for diamond is higher than glass at 2.42.

Refraction SageMath Code

$$
\alpha=-\mu \quad \beta=\mu(W \cdot N)-\sqrt{1-\mu^{2}+\mu^{2}(W \cdot N)^{2}}
$$

def refract_tray(self, W, pt, N, eta1, eta2) : etar = eta1 / eta2
a $=$ - etar
$\mathrm{wn} \quad=\operatorname{np} \cdot \operatorname{dot}(\mathrm{W}, \mathrm{N})$
radsq $=$ etar**2 * (wn**2 - 1) + 1
if (radsq < 0.0) :

$$
T=\text { np.array }([0.0,0.0,0.0])
$$

else :

$$
\begin{aligned}
& \mathrm{b}=(\text { etar } * \mathrm{wn})-\text { sqrt (radsq) } \\
& \mathrm{T}=\mathrm{a} * \mathrm{~W}+\mathrm{b} * \mathrm{~N}
\end{aligned}
$$

return(T)

Refraction Code - Exiting the Sphere

```
def refract_exit(self, W, pt, eta_in, eta_out) :
    T1 = self.refract_tray(W, pt, make_unit(pt - self.C), eta_out, eta_in)
    if (sum(T1) == 0.0) :
        return None Here is code to find the exit point on the sphere.
    else :
        exit = pt + 2 * np.dot((self.C - pt),T1) * T1
        Nin = make_unit(self.c - exit)
        T2 = self.refract_tray(-T1, exit, Nin, eta_in, eta_out)
        refR = Ray(exit, T2)
        return refR
```

Note the code to compute a refraction ray is called twice. Once upon entering and once upon leaving.

Now With Recursion at 6

This image is created using the same configuration (Diamond) as the previous.

The only
change is recursion level is now set to 6

.. and expanding field of view

This image is created using the same configuration (Diamond) as the previous.

The only change is distance to the near clipping plane is 4 instead of 5

To Show a Quarter of the Image

For this example the bounds run -2 to 0 on both horizontal and vertical.

To Show a Quarter of the Image

For this example the bounds run -2 to 0 on both horizontal and vertical.

If you understand why the green sphere is being rendered in this view then you are a long way towards understanding refraction.

Now to the "default" scene

```
cam1 = Camera((50,50,100),(50,50,10),(0,1,0),(-2.0,2.0,-2.0,2.0),-5,-100,8,8)
cam2 = copy(cam1);
cam2.width = 512
cam2.height = 512
mats = [Material((0.2, 0.2, 0.2),(0.6, 0.6, 0.6),(0.5, 0.5, 0.5),(0.9, 0.9, 0.9),(0.5, 0.5, 0.5), 64, 2.0),
        Material((1.0, 0.0, 0.0),(1.0, 0.0, 0.0),(1.0, 1.0, 1.0),(0.9, 0.9, 0.9),(1.0, 1.0, 1.0), 32, 1.3),
        Material((0.0, 1.0, 0.0),(0.0, 1.0, 0.0),(1.0, 1.0, 1.0),(0.9, 0.9, 0.9),(1.0, 1.0, 1.0), 32, 1.3),
    Material((0.0, 0.0, 1.0),(0.0, 0.0, 1.0),(1.0, 1.0, 1.0),(0.9, 0.9, 0.9),(1.0, 1.0, 1.0), 32, 1.3)]
```

lgts $=[\operatorname{Light}((20,100,100),(0.75,0.75,0.75)), \operatorname{Light}((80,100,100),(0.75,0.75,0.75))]$
ambi $=\operatorname{vector}(R R, 3,(0.2,0.2,0.2))$
objs $=[$ Globe $((50,50,50), 9,0)$,
Globe ($(35,60,20), 9,1)$,
Globe(($65,60,20), 9,2)$,
Globe((50,35,20), 9, 3)]
eta_outside $=1.0$
trace_depth $=6$

Detail: About The Yellow Pixel

Here is the default scene with the semi-transparent sphere removed.
In the last lecture I was asked about the bit of yellow at the edge of the semi-transparent sphere.

Double Recursion Code

```
def ray_trace(ray, accum, refatt, level) :
    if (ray_find(ray) != None) :
        N = make_unit(ray.best_pt - ray.best_sph.C)
        mat = mats[ray.best_sph.m]
        pt_illum(ray, N, mat, accum, refatt)
        if (level > 0) :
            flec = np.array([0.0,0.0,0.0])
            Uinv = (-1 * ray.D)
            refR = make_unit((2 * np.dot(N, Uinv) * N) - Uinv)
            ray_trace(Ray(ray.best_pt, refR), flec, mat.kr * refatt, (level - 1))
            for i in range(3) : accum[i] += refatt[i] * mat.ko[i] * flec[i]
        if (level > 0) and (sum(mat.ko) < 3.0) :
            thru = np.array([0.0, 0.0, 0.0])
            fraR = ray.best_sph.refract_exit(-1 * ray.D, ray.best_pt, mat.eta, eta_outside)
            if fraR != None :
                ray_trace(fraR, thru, mat.kr * refatt, (level - 1))
                for i in range(3) : accum[i] += refatt[i] * (1.0 - mat.ko[i]) * thru[i]
```

 return accum
 - There are two calls to ray trace
- There are two intermediate accumulation vectors for colors
- The sphere object finds the exit refraction ray
- Transparency is modulated by the mat . ko property.

What About Shadows

- It is easy to test whether and object is between the point of interest and light.
- It is harder to 'dim' a light - not done here.
def shadow(pt, lt) :
$\mathrm{L}=\mathrm{lt} . \mathrm{P}$ - pt
ray $=$ Ray (pt, L)
dtl $=$ np.dot(L, ray.D)
for s in objs :
if ray.sphere_test(s) and ray.best_t < dtl : return True
return False

The "default" scene with Shadows

The 3D view above shows how the light source 'sees' the semitransparent and then blue sphere.

The Complete Package

When you understand every line of code in the Sage Notebook creating this image you are will be in a position to write a truly compelling ray tracer.

