Lecture 20:
All Together with Refraction

November 10, 2020

Translucence

« Some light passes through the material.

— Typically, “passed through” light gets the
diffuse reflection properties of the surface,
unless object is 100% translucent (i.e.
transparent)

« Speed of light is a function of the medium
— This causes light to bend at boundaries
— example: looking at the bottom of a pool

Refraction - With Trigonometry

Key is Snell’s law ...
sin (6,)=-"sin

Hi Angle of incidence

Ht Angle of refraction
77i Index of refraction material #1
T]t Index of refraction material #2

The refraction ray is:

T=(icos(0i)—cos(¢9t))N—iW
n,

11/10/20 CSU CS410 Fall 2020, © Ross Beveridge

Practical Refraction: Solids
* When light enters a solid glass object?

Nair— 1.0 T

n glass_ 1.5

0, = sin‘l(

0) 0.00 0.67 0.00
10 0.17 0.67 6.67
20 0.34 0.67 13.33
30 0.50 0.67 20.00
40 0.64 0.67 26.67
50 0.77 0.67 33.33
60 0.87 0.67 40.00
70 0.94 0.67 46.67
80 0.98 0.67 53.33
90 1.00 0.67 60.00]

1;

—Lsin

n,

(9,-)) =sin”' (0.67 : sin(@i))

More Recursion

* This changes ray tracing from tail-recursion
to double-recursion...

lightl light2

Z\Q/

/Z

<

This is the recursive
Refraction ray

[
camera

AN

A
<
03

light3

11/10/20 CSU CS410 Fall 2020, © Ross Beveridge

Practical Refraction: Surfaces

« What happens as it passes through a solid or surface?

sin6, = T gin 0.
1,

sin6, = Ll —£8inb,
n;
9 T]z T]r

n, M
=sino,

sin sin 0,

» OQverall effect: displacement of the incident vector

11/10/20 CSU CS410 Fall 2020, © Ross Beveridge

Refraction - No Trigonometry.

First Constraint: Snells Law

T'=aW+pN

sin(6,) u® =sin(6,)" u= M

l—cos(@l.)z)u2 =1-cos(6,)’

(1=(w-N)”
\
/

(1=(w-NY

11/10/20 CSU CS410 Fall 2020, © Ross Beveridge

Refraction - No Trigonometry

Second Constraint: Refraction ray is unit length.
T-T=(aW+pN) (aW+pN)=1
=o' +2af(W-N)+p" =1
Two quadratic equations in two unknowns.

Solving is a bit involved, ...
Here is the answer.

a=-u /3=M(W-N)—\/1—M2+/,¢2(W-N)2

CSU CS410 Fall 2020, © Ross Beveridge

A Wonderful Real Example

AAPT High School Physics Photo Contest (sample picture)

First Place - Contrived (2009)

Title: Where Sand Meets Sea

Student: Kelsey Rose Weber

School: Wild! d School, Los Angeles, California
Teacher: Tengiz Bibilashvili

This photo was contrived by placing a transparent sphere against the
beach horizon. By matching the refraction from the sphere with the

point where the shoreline and skyline meet, this photo demonstrates
the physics of refraction. By means of refraction, lenses form an
image. The glass sphere in this photo acted as a lens causing the
inverted image. This photo was taken at the Venice beach in Los

Angeles, California and shows the beauty of combining physics with

ones own natural surroundings.

https://physicsb-2009-10.wikispaces.com

Yes, refraction typically makes everthing upside down and backwards.

11/10/20 CSU CS410 Fall 2020, © Ross Beveridge

Refraction and Polygons

* It is entirely possible to implement refraction
through complex solid models defined by

polygons.
« But! Doing so requires the following:
— Models must be complete: no holes!

— All faces (triangles) must be tagged to a solid.
* Needed to find where refraction ray exits the solid.

* There is a simpler special case
— Thin faces with parallel sides (next slide).

Special Case: Thin Faces

e Consider entrance and exit
— The are parallel (see picture)

 Refraction vectors
— Pass through at a shifted angle
— But exit in the same direction

* Result is an offset only
— Offset depends on index of refraction
— Offset depends on the thickness of the face

cocalc.com/projects/522a43e0-1873-4569-b71f-81078b04cbaf/files/Handouts/Ha

»

O Projects [#' CS410 Fall 2020 X © CoCalc 18 Help R Account Q - ¥
= Files O New ‘__‘) Log Q Find c nfo ’ Settings ™ CSU CS410 Fall 2020.coux SRS VIVIARIYINEY) cs410lec20n01_1024.pngX = cs410_Fall2020_Lec20n0X | ¢ ® chat a Private
K File v D Q @ X & 0 = Contents &%, Format & Print Notebook v B m x
File Edit View Insert Cell Kernel Help CPU: 0% | Memory: 257MB | Trusted | SageMath 9.1 O

+ > Vb H B £ » tab Code v # Snippets M Halt Validate

llluminated Spheres with Relfection and Refraction: Scene 1
Ross Beveridge, November 10, 2020

This notebook is a rather complete illustration of many key concepts in CS 410 pertaining to Ray Tracing. This example consists of one semi-transparent sphere partially occluding 3 brightly
colored spheres forming a triangle pattern.

The general concpets illustrated here include:

e A camera object/model fully specifying how a camera views a 3D scene.
e A ray object defined by a point of origination and a direction.

e A scene consisting of multiple 3D objects, more specifically spheres.

e Materials used to specify how light interacts with an object's surface.

e Point light sources
e A SageMath enabled 3D visualization of the
e Code to efficiently detect ray sphere interség

e Code to support recursive ray tracing with i
e Code to shoot a refractioh ray through a se
e Code to render scenes at user specified resi

This notebook should be used to study and experi
optimized. However, it is compact enough to fit &

11/10/20 CSU CS410 Fall 2020, © Ross Beveridge 1

o

(V]

Building A Scene Example 1

* One semi-transparent sphere with eta 1.0
* View three colored spheres behind.

11/10/20 CSU CS410 Fall 2019, © Ross Beveridge

About Materials

class Material :
def init (self, a, d, s, r, o, spow, eta) :

self.ka = np.array(a)
self.kd = np.array(d)
self.ks = np.arrayasﬂ
self.kr = np.array(r)
self.ko = np.array(o)
self.spow = spow
self.eta = eta

ka: the red, green and blue coefficients for ambient illumination

kd: the red, green and blue coefficients for diffuse illumination

ks: the red, green and blue coefficients for specular illumination

spow: the exponent used to control the apparent size of specular highlights

kr: the red, green and blue attenuation for reflection

ko: the red, greeen and blue opacity of the material

eta: the index of refraction for the material: 1.0 for air and typically 1.5 for glass

11/10/20 CSU CS410 Fall 2019, © Ross Beveridge 14

Small Change to Eta

» To see a minor change based upon the index
of refraction being set to 1.05 instead of 1.0

A Large Change in Eta

A bit of graphics science fiction, here is a
Germanium sphere with a very high eta.

And a Diamond Sphere

* The index of refraction for diamond is higher
than glass at 2.42.

Refraction SageMath Code

a=-pt B=u(W-N)=\l-p+u*(W-N)

def refract tray(self, W, pt, N, etal, eta2)

11/10/20

etar =
a —
wn =
radsq =

etal / eta2

- etar

np.dot(wW,N)

etar**2 * (wn**2 - 1) + 1

if (radsqg < 0.0)

T =
else :
b =
T

np.array([0.0,0.0,0.01])

(etar * wn) - sqrt(radsq)
a * W+ Db * N

return(T)

CSU CS410 Fall 2019, © Ross Beveridge 18

Refraction Code — Exiting the Sphere

def refract exit(self, W, pt, eta in, eta out)
Tl = self.refract tray(W, pt, make unit(pt - self.C), eta out, eta in)

if (sum(Tl) == 0.0)

elser?t“rn (el Here is code to find the exit point on the sphere.

T
exit = pt + 2 * np.dot((self.C - pt),T1l) * T1
Nin = make unit(self.C - exit)
T2 = self.refract tray(-Tl, exit, Nin, eta in, eta out)
refR = Ray(exit, T2)]
return refR

-W Pt

T1 exit

Note the code to compute
a refraction ray is called
twice. Once upon entering
and once upon leaving.

11/10/20 CSU CS410 Fall 2019, © Ross Beveridge 19

Now With Recursion at 6

This image is
created using
the same

configuration
(Diamond) as
the previous.

The only
change is
recursion level
IS now set to 6

CSU CS410 Fall 2019, © Ross Beveridge

.. and expanding field of view

This image is
created using
the same

configuration
(Diamond) as
the previous.

The only
change is
distance to the
near clipping
planeis 4
instead of 5

11/10/20 CSU CS410 Fall 2019, © Ross Beveridge

To Show a Quarter of the Image

For this example the bounds run -2 to 0 on both horizontal and vertical.

100.0

11/10/20

1 C : o.p/ .
" . 11 (5 . 9
J <
, Te
50p
J
J
0.0 50.0 1000 4odlo
.0
050"
CSU CS410 Fall 2019, © Ross Beveridge 22

To Show a Quarter of the Image

For this example the bounds run -2 to 0 on both horizontal and vertical.

50.0

100.0

0.0 50.0 100.0

If you understand why the
green sphere is being rendered
in this view then you are a long
way towards understanding
refraction.

11/10/20 CSU CS410 Fall 2019, © Ross Beveridge

Now to the “default” scene

caml = Camera((50,50,100),(50,50,10),(0,1,0),(-2.0,2.0,-2.0,2.0),-5,-100,8,8)
cam2 copy(caml);
cam2.width = 512
cam2.height = 512

mats = [Material((0.2, 0.2, 0.2),(0.6, 0.6, 0.6),(0.5, 0.5, 0.5),(0.9, 0.9, 0.9),(0.5, 0.5, 0.5)), 64, 2.0),
Material((1.0, 0.0, 0.0),(1.0, 0.0, 0.0),(1.0, 1.0, 1.0),(0.9, 0.9, 0.9),(1.0, 1.0, 1.0), 32, 1.3),
Material((0.0, 1.0, 0.0),(0.0, 1.0, 0.0),(1.0, 1.0, 1.0),(0.9, 0.9, 0.9),(1.0, 1.0, 1.0), 32, 1.3),
Material((0.0, 0.0, 1.0),(0.0, 0.0, 1.0),(1.0, 1.0, 1.0),(0.9, 0.9, 0.9),(1.0, 1.0, 1.0), 32, 1.3)]

lgts = [Light((20,100,100),(0.75, 0.75, 0.75)),Light((80,100,100),(0.75, 0.75, 0.75))]

ambi = vector(RR, 3, (0.2, 0.2, 0.2))

objs = [Globe((50,50,50), 9, 0),
Globe((35,60,20), 9, 1),
Globe((65,60,20), 9, 2),
Globe((50,35,20), 9, 3)]

eta outside = 1.0

trace_depth = 6

Detail: About The Yellow Pixel

Here is the default scene with the semi-transparent sphere removed.

In the last lecture | was asked about the bit of yellow at
the edge of the semi-transparent sphere.

Double Recursion Code

def ray trace(ray, accum, refatt, level) :
if (ray find(ray) != None) :
N = make unit(ray.best pt - ray.best sph.C)
mat = mats[ray.best sph.m]
pt _illum(ray, N, mat, accum, refatt)
if (level > 0) :
flec = np.array([0.0,0.0,0.0])
Uinv = (-1 * ray.D)
refR = make unit((2 * np.dot(N, Uinv) * N) - Uinv)
ray trace(Ray(ray.best pt, refR), flec, mat.kr * refatt, (level - 1))
for i in range(3) : accum[i] += refatt[i] * mat.ko[i] * flec[i]
if (level > 0) and (sum(mat.ko) < 3.0) :
thru = np.array([0.0, 0.0, 0.0])
fraR = ray.best sph.refract exit(-1 * ray.D, ray.best pt, mat.eta, eta outside)
if fraR != None :
ray trace(fraR, thru, mat.kr * refatt, (level - 1))
for i in range(3) : accum[i] += refatt[i] * (1.0 - mat.ko[i]) * thru[i]
return accum

* There are two calls to ray trace

* There are two intermediate accumulation vectors for colors
 The sphere object finds the exit refraction ray

* Transparency is modulated by the mat . ko property.

11/10/20 CSU CS410 Fall 2019, © Ross Beveridge

What About Shadows

* |t is easy to test whether and object is
between the point of interest and light.

* It is harder to ‘dim’ a light — not done here.

def shadow(pt, 1t

L = 1lt.P - pt
ray = Ray(pt, L)
dtl = np.dot(L, ray.D)
for s in objs :
if ray.sphere test(s) and ray.best t < dtl :

return True
return False

11/10/20 CSU CS410 Fall 2019, © Ross Beveridge

The “default” scene with Shadows

@
o,

/

50.0 #

The 3D view above
shows how the
light source ‘sees’
the semi-
transparent and
then blue sphere.

The Complete Package

When you understand every line of code in the Sage Notebook creating this
image you are will be in a position to write a truly compelling ray tracer.

