
SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS

[THREADS]

Shrideep Pallickara
Computer Science

Colorado State University

At a glance: User vs Kernel threads
User level threads are hidden from the kernel’s sight
And need a runtime to function right
Programmers face the lockout strain
Restricted to the process’ resources, a painful gain

Kernel threads are known to the kernel’s core
Schedulable, they open the door
To access resources system wide
More work for the kernel, with less time to bide

1

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.2

Frequently asked questions from the previous class
survey
¨ A process with multiple threads can run on multi-core and single-core systems?
¨ If a 2 processes A and B create shared memory, can threads from those processes access

that memory?
¨ Can you think of threads as child processes?
¨ Do threads always run concurrently, or do they ever block until the nother thread finishes or

returns something?
¨ Is the number of threads a program can create limited by the number of underlying cores?
¨ Say the main thread creates threads T1 and T2. When thread T1is running, can T2 and the

main thread also be running?
¨ When writing threads, do you specify the number of cores to use?
¨ Hyperthreading and its relation to execution of threads
¨ What if I call fork() in a process that has a 1000 threads, and don’t invoke exec()?
¨ If threads are so great, why even use a process?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.3

Topics covered in this lecture

¨ User- and kernel-level threads
¨ Thread Models
¨ Thread Libraries

3

COMPUTER SCIENCE DEPARTMENT

WRITING MULTITHREADED
PROGRAMS

There’s a thread you follow. It goes among
things that change. But it doesn’t change.
People wonder about what you are pursuing.
You have to explain about the thread.
But it is hard for others to see.
While you hold it you can’t get lost.

The Way It Is, William Stafford

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.5

Going about writing multithreaded programs [1/2]

¨ The key idea is to write a concurrent program — one with
many simultaneous activities
¤As a set of sequential streams of execution, or threads, that interact

and share results in very precise ways

¨ Subdivide functionality into multiple separate & concurrent
tasks

¨ Threads let us define a set of tasks that run concurrently while
the code for each task is sequential

5

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.6

Going about writing multithreaded programs [2/2]

¨ Managing data manipulated by tasks
¤Split to run on separate cores. BUT

n Examine data dependencies between the tasks

¨ Threaded programs on multi-core systems have many different
execution paths
¤Which may or may not reveal bugs

¤ Testing and debugging is inherently harder

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

USER-LEVEL THREADS

7

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.8

User-level threads: Overview

Kernel

User
space

Kernel
space

Process Thread

Thread
table

Process
table

Runtime System

? Program counters

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.9

User threads are invisible to the kernel and have low
overhead

¨ Compete among themselves for resources allocated to their
encapsulating process

¨ Scheduled by a thread runtime system that is part of the process
code

¨ Programs link to a special library
¤ Each library function is enclosed by a jacket

¤ Jacket function calls thread runtime to do thread management
n Before (and possibly after) calling jacketed library function

9

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.10

User level thread libraries: Managing blocking calls

¨ Replace potentially blocking calls with non-blocking ones

¨ If a call does not block, the runtime invokes it

¨ If the call may block
① Place thread on a list of waiting threads
② Add call to list of actions to try later
③ Pick another thread to run

¨ ALL control is invisible to user and OS

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.11

Disadvantages of the user level threads model [1/2]

¨ Assumes that the runtime will eventually regain control, this is
thwarted by:
¤CPU bound threads
¤ Thread that rarely performs library calls …

n Runtime can’t regain control to schedule other threads

¨ Programmer must avoid lockout situations
¤ Force CPU-bound thread to yield control

11

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.12

Disadvantages of the user level threads model [2/2]

¨ Can only share processor resources allocated to encapsulating
process
¤ Limits available parallelism

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

KERNEL THREADS

13

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.14

Kernel-level threads: Overview

Kernel

User
space

Kernel
space

Process Thread

Thread
table

Process table

? Program counters

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.15

Kernel threads

¨ Kernel is aware of kernel-level threads as schedulable entities
¤Kernel maintains a thread table to keep track of all threads in the

system

¨ Compete system wide for processor resources
¤Can take advantage of multiple processors

15

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.16

Kernel threads:
Management costs

¨ Scheduling is almost as expensive as processes
¤Synchronization and data sharing less expensive than processes

¨ More expensive to manage than user-level threads

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.17

Hybrid thread models

¨ Write programs in terms of user-level threads

¨ Specify number of schedulable entities associated with process
¤Mapping at runtime to achieve parallelism

¨ Level of user-control over mapping
¤ Implementation dependent

17

COMPUTER SCIENCE DEPARTMENT

THREAD MODELS

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.19

The Many-to-One threading model

User threads

k Kernel thread

19

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.20

Many-to-One Model maps many user-level threads
to 1 kernel thread

¨ Thread management done by thread library in user-space

¨ What happens when one thread makes a blocking system call?
¤ The entire process blocks!

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.21

Many-to-One Model maps many user-level threads
to 1 kernel thread

¨ Only 1 thread can access kernel at a time
¤Multiple threads unable to run in parallel on multi-processor/core

system

¨ E.g.: Solaris Green threads, GNU Portable threads

21

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.22

The One-to-One threading model

k k k

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.23

One-to-One Model:
Maps each user thread to a kernel thread

¨ More concurrency
¤Another thread can continue to run, when a thread invokes a blocking

system call

¨ Threads run in parallel on multiprocessors

23

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.24

One-to-One Model:
Maps each user thread to a kernel thread

¨ Disadvantages:
¤ There is an overhead for kernel thread creation

n Multiple user threads can degrade application performance

¨ Supported by:
¤ Linux
¤Windows family: NT/XP/2000/Vista/7/8/10/11
¤Solaris 9 and up

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.25

Many-to-Many threading Model:
2-level is a variant of this

kk k kk k k

Many-to-Many Two-level

25

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.26

Many-to-Many model

¨ Multiplex many user-level threads on a smaller number of
kernel threads

¨ Number of kernel threads may be specific to
¤Particular application
¤Particular machine

¨ Supported in
¤ IRIX, HP-US, and Solaris (prior to version 9)

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.27

A comparison of the three models

Many-to-one One-to-One Many-to-Many

True
Concurrency

During blocking
system call?

Kernel thread
creation

Caveat

NO YES YES

Process Blocks Process DOES NOT
block

Process DOES NOT
block

Kernel thread
already exists

Kernel thread
creation overhead

Kernel threads
 available

Use system calls
(blocking) with care

Don’t create too
many threads

27

COMPUTER SCIENCE DEPARTMENT

THREAD LIBRARIES
Provide an API for creating and managing threads

Nature uses only the longest threads to weave her patterns, so
that each small piece of her fabric reveals the organization of
the entire tapestry.

Richard P. Feynman

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.29

Thread libraries provide an API for managing
threads

¨ Includes functions for :
① Thread creation and destruction
② Enforcement of mutual exclusion
③ Conditional waiting

¨ Runtime system to manage threads
¤Users are not aware of this

29

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.30

User level thread libraries

¨ No kernel support

¨ Library code & data structures reside in user space

¨ Invoking a library function does not result in a system call
¤ Local function call in user space

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.31

Kernel level thread libraries

¨ Library code & data structures in kernel space

¨ Invoking library function typically results in a system call

31

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.32

Thread libraries provide an API for creating and
managing threads

User level library Kernel level
library

Library code and data
structures

Can invocation of library
function result in system
call?

OS support

Reside in
user space

Reside in
kernel space

NO YES

NO YES

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.33

Dominant thread libraries (1)

¨ POSIX pthreads
¤ Extends POSIX standard (IEEE 1003.1c)
¤Provided as user- or kernel-level library
¤ Linux, Mac OS X, Solaris, BSD

¨ Win32 thread library
¤Kernel-level library

33

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.34

Dominant thread libraries (2)

¨ Java threading API
¤ Implemented using thread library on host system

n On Windows: Threads use Win32 API
n UNIX/Linux: Uses pthreads

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

JAVA THREADS
Harnesses the thread model of the host OS

35

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.36

Java threads example

¨ We will use a thread to perform summation of a non-negative
integer

€

sum = i
i=0

N

∑

• If N=5, we compute the sum of 0 through 5
• 0 + 1 + 2 + 3 + 4 + 5 = 15

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.37

Java

¨ Designed from the ground-up to support concurrent
programming
¤Basic concurrency support in the language and class libraries

¨ Java 1.5 (or 5) and higher
¤Powerful high-level concurrency APIs

37

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.38

JVMs harness the thread models of the host OS

¨ Windows/Linux have a one-to-one model
¤So a thread maps to a kernel thread

¨ Tru64 UNIX uses the many-to-many model
¤ Java threads mapped accordingly

¨ Solaris
¤ Initially, used Green Threads à many-to-one
¤Version 9 onwards: one-to-one model

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.39

Creating Threads in Java

① Create a new class derived from Thread
¤ Override its run() method

② More commonly used: Runnable interface
¤ Has 1 method run()
¤ Create new Thread class by passing a Runnable object to its

constructor

③ The Executor interface (java.util.concurrent)
¤ Has 1 method execute()

39

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.40

Java Threads: Interrupts

¨ Invoke interrupt() on the Thread

¨ Threads must support their own interruption

¨ An interruptible thread needs to
① Catch the InterruptedException

n Methods such as sleep() throw this, and are designed to cancel the
operation and return

② Periodically invoke Thread.interrupted() to see if it has been
interrupted

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.41

Java Threads: joins

¨ If thread object threadA is currently executing

¨ Another thread can call threadA.join()
¤Causes current thread to pause execution until threadA terminates

¨ Variants of join()
¤Specify a waiting period

41

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.42

Using Java Threads [1/3]

class Sum {
 private int sum;

 public int get() {
 return sum;
 }

 public void set(int sum) {
 this.sum = sum;
 }
}

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.43

Using Java Threads [2/3]

class Summation implements Runnable {
 private int upper;
 private Sum sumValue;

 public Summation(int upper, Sum sumValue) {
 this.upper = upper;
 this.sumValue = sumValue;
 }

 public void run() {
 int sum = 0;
 for (int i = 0; i <= upper; i++)
 sum += i;

 sumValue.set(sum);
 }
}

43

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.44

Using Java Threads [3/3]

public class Driver {
 public static void main(String[] args) {

 Sum sumObject = new Sum();
 int upper = Integer.parseInt(args[0]);

 Thread worker = new Thread(new Summation(upper, sumObject));
 worker.start();
 try {
 worker.join();
 } catch (InterruptedException ie) {
 ie.printStacktrace()
 }
 System.out.println("The sum of " + upper + " is " +
 sumObject.get());
 }
}

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

POSIX THREADS
This is a specification for thread behavior,
not an implementation

45

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.46

POSIX thread management functions:
Return 0 if successful

POSIX function Description

pthread_cancel Terminate another thread

pthread_create Create a thread

pthread_detach Set thread to release resources

pthread_exit Exit a thread without exiting process

pthread_kill Send a signal to a thread

pthread_join Wait for a thread

pthread_self Find out own thread ID

Functions return a non-ZERO error code
Do NOT set errno

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.47

POSIX: Thread creation
pthread_create()

¨ Automatically makes the thread runnable without a start
operation

¨ Takes 3 parameters:
① Points to ID of newly created thread

② Attributes for the thread
n Stack size, scheduling information, etc.

③ Name of function that the thread calls when it begins execution

47

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.48

Using Pthreads (1)

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */

void *runner(void *param); /* the thread */

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.49

Using Pthreads (2)

int main(int argc, char *argv[]){

 pthread_t tid; pthread_attr_t attr;
/* get the default attributes */
pthread_attr_init(&attr);

/* create the thread */
pthread_create(&tid, &attr, runner, argv[1]);

/* now wait for the thread to exit */
pthread_join(tid, NULL);

printf("sum = %d\n",sum);
}

49

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.50

Using Pthreads (3)

/**
 * The thread will begin control in this function
 */
void *runner(void *param)
{
int i, upper = atoi(param);
sum = 0;

 if (upper > 0) {
 for (i = 1; i <= upper; i++)
 sum += i;
 }

 pthread_exit(0);
}

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.51

POSIX: Detaching and Joining

¨ When a thread exits it does not release its resources
¤Unless it is a detached thread

¨ pthread_detach()
¤Sets internal options to specify that storage for thread can be

reclaimed when it exits
¤1 parameter: Thread ID of the thread to detach

51

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.52

POSIX: Thread joins

¨ Threads that are not detached are joinable

¨ Undetached threads don’t release resources until
¤ Another thread calls pthread_join for them
¤ Process exits

¨ pthread_join
¤ Takes ID of the thread to wait for
¤ Suspends calling thread till target terminates
¤ Similar to waitpid at the process level
¤ pthread_join(pthread_self())?

n Deadlock!

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.53

POSIX: Exiting and cancellation

¨ If a process calls exit, all threads terminate

¨ Call to pthread_exit causes only the calling thread to
terminate

¨ Threads can force other threads to return through a cancellation
mechanism
¤ pthread_cancel: takes thread ID of target
¤Depends on type and state of thread

53

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.54

More info on pthread_cancel

¨ State: pthread_setcancelstate to change state
§ PTHREAD_CANCEL_ENABLE
§ PTHREAD_CANCEL_DISABLE

n Cancellation requests are held pending

¨ Cancellation type allows thread to control when to exit
§ PTHREAD_CANCEL_ASYNCHRONOUS

n Any time
§ PTHREAD_CANCEL_DEFFERED

n Only at specified cancellation points

54

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.28

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.55

Win32 Threads

¨ CreateThread
¤Security Information, size of stack, flag (start in suspended state?)

¨ WaitForSingleObject

¨ CloseHandle

55

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.56

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th

edition. John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 4]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition,
2014. Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 2].

¨ Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice
Hall ISBN-13: 978-0-13-042411-2. [Chapter 12]

¨ Thomas Anderson and Michael Dahlin. Operating Systems: Principles and
Practice, 2nd Edition. Recursive Books. ISBN: 0985673524/978-0985673529.
[Chapter 4]

56

