
SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS
[INTER PROCESS COMMUNICATIONS]

Shrideep Pallickara
Computer Science

Colorado State University

The Kernel’s Dilemma
What type of kernel do you have?
Monolithic, you say?
Then most services must find their way
Into the kernel’s fold

But a failure in the kernel –
 Leads to a crash, a reboot's toll

Would you like to go micro?
 Be judicious, choose with care
What belongs in user mode,
 Let it stay there

Case in point: device drivers –
 They have their place,
 Just not in the kernel’s embrace

1

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.2

Frequently asked questions from the previous class
survey
¨ Background processes: Are they somehow connected to the shell?

¤ How would you terminate a background process?
¨ What are buffers?
¨ Producer-consumer with bounded buffer

¤ How is the size of the buffer enforced?
¤ Do the variables out and in have to been in sync?
¤ Do you need flags or markers for consumption?
¤ What if there are multiple producers and consumers connected to the shared memory? Would you need other

variables?
¤ Is the copy-paste clipboard in most OSes related to this concept somehow?

¨ Shared memory between A and B: Are the numeric values of the addresses the same?
¨ Do you have to configure processes as independent or cooperative?
¨ Philosophical question: Pointers and references are messy, could we just get rid of them?
¨ Cores, execution pipelines, and concurrency

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.3

Topics covered in this lecture

¨ Inter Process Communications
¤ Messaging

¤ Pipes

¨ Monolithic Kernels and Micro kernels

3

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.4

Message Passing Buffer:
Consumer always has to wait for message

¨ ZERO capacity: No messages can reside in queue
¤ Sender must block till recipient receives

¨ BOUNDED: At most n messages can reside in queue
¤ Sender blocks only if queue is full

¨ UNBOUNDED: Queue length potentially infinite
¤ Sender never blocks

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

MESSAGE PASSING IN WINDOWS XP

Just a castaway, an island lost at sea, oh
Another lonely day with no one here but me, oh
More loneliness than any man could bear
Rescue me before I fall into despair, oh
I'll send an S.O.S to the world
I'll send an S.O.S to the world

Message in a Bottle, The Police

5

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.6

Message passing in Windows XP

¨ Called the local procedure call (LPC) facility

¨ Communications provided by port objects
¤ Give applications a way to set up communication channels

¨ Uses two types of message passing
¤ Small messages (max 256 bytes)
¤ Large messages

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.7

Connection ports are named objects visible to all
processes [LPC in XP]

CLIENT SERVER

Connection
Port

Client Communication
Port

Server
Communication Port

Shared Section
Object

(<=256 bytes)

Connection
request Handle

Handle

Handle

Sets up a region of shared memory

7

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.8

Windows XP message passing
Small messages

¨ Use port’s internal message queue as intermediate storage

¨ Copy messages from one process to another

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.9

Windows XP message passing:
Large messages [1/2]

¨ Send message through section object
¤ Sets up shared memory

¨ Section object info sent as a small message
¤ Contains pointer + size information about section object

9

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.10

Windows XP message passing:
Large messages [2/2]

¨ 2 ends of communications set up section objects if the request or reply
is large

¨ Complicated, but avoids data copying

¨ Callbacks used if the endpoints are busy
¤ Allows delayed responses
¤ Allows asynchronous message handling

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

PIPES

And the better in memory to fix
The place of the Children’s last retreat,
They called it, The Pied Piper's Street —
Where any one playing on pipe or tabor
Was sure for the future to lose his labour

The Pied Piper of Hamelin, Robert Browning

11

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.12

Pipes

¨ Pipes serve as a conduit for communications between processes

¨ One of the first IPC implementation mechanisms

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.13

Issues to consider when implementing a pipe

¨ Unidirectional or bidirectional

¨ If it is bidirectional
¤ Half duplex: Data can travel one way at a time
¤ Full duplex: Data traversal in both directions simultaneously

¨ Must a relationship exist between the endpoints?
¤ e.g., parent-child

¨ Range of communications
¤ Intra-machine or Over the network

13

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.14

Pipes in practice

¨ Set up pipe between commands

ls | more

Output of ls delivered as input to more

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.15

Ordinary pipes

¨ Producer writes to one end of the pipe

¨ Consumer reads from the other end

¨ In UNIX: pipe(int fd[]) to create pipe
§ fd[0] is the read-end
§ fd[1] is the write-end

§ Treats a pipe as a special type of file
n Access with read() and write() system calls

15

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.16

A child inherits open files from its parent

¨ Since a pipe is a special type of file, the pipe is also
inherited
¤ Parent and child close unused portions of the pipe

Parent

fd[0] is the read-end
fd[1] is the write-end

fd[0]

fd[1]
fd[0]

Child

fd[1]

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.17

Pipes: Example

if (pipe(fd) == -1) {
 /* creation failed */

}
pid = fork();

if (pid > 0) {
 close(fd[READ_END]);
 write(fd[WRITE_END], write_msg,…);
}

if (pid == 0) {
 close(fd[WRITE_END]);
 read(fd[READ_END], …);
}

17

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.18

Windows Ordinary Pipes:
These are unidirectional

¨ Anonymous Pipes

¨ Child does not automatically inherit pipe
¤ Programmer specifies attributes a child will inherit
¤ Initialize SECURITY_ATTRIBUTES to allow handles to be inherited
¤ Redirect child’s standard I/O handles to read/write handle of pipe
¤ Pipes are half duplex

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.19

Some other things about ordinary pipes on UNIX
and Windows

¨ Requires parent-child relationship
¤ MUST be on same machine

¨ Exist only when processes communicate with one another
¤ Upon termination, pipe ceases to exist

19

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.20

Named Pipes

¨ Can be bidirectional

¨ NO parent-child relationship needed

¨ Once named pipe is established
¤ Several processes can use it for communications

¨ Continues to exist after communicating processes have finished

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.21

Named Pipes on UNIX/Windows

¨ Referred to as FIFO on UNIX systems
¤ Created with mkfifo()
¤ Manipulated with open(), read(), write() etc.

¨ FIFO: Bidirectional but half-duplex transmissions
¤ If data must go both ways: use 2 FIFOs
¤ Sockets used for inter-machine communications

¨ Windows: Full duplex communications

21

COMPUTER SCIENCE DEPARTMENT

COMMUNICATIONS IN CLIENT-SERVER SYSTEMS

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.23

Remote Procedure Calls

¨ Abstracts procedure call mechanisms for use with network endpoints

¨ Based on the request/reply model

¨ Message is addressed to the RPC daemon listening to a port for
incoming traffic
¤ Contains identifiers of function to execute
¤ Parameters to pass to the function
¤ TCP/UDP port number: 530

n Other example ports: DNS(53), HTTP(80), NTP(123), etc.

23

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.24

Remote Procedure Calls

¨ Application makes CALL into a procedure
¤ May be local or remote and
¤ BLOCKS until call returns

¨ Origins:
¤ RFC 707 (1976)
¤ First use by Xerox 1981 (Courier)
¤ 1984 paper by Birell and Nelson

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.25

RPCs are slightly more complicated than local
procedure calls

¨ Network between the Calling process and Called process can
¤ Limit message sizes,
¤ Reorder them or
¤ Lose them

¨ Computers hosting processes may differ
¤ Architectures and data representation formats

25

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.26

Resolving big-endian/little endian issues

¨ Big endian: Store MSB first

¨ Little endian: Store LSB first

¨ Machine independent data representation

¤ XDR: eXternal Data Representation

¤ Client side parameter marshalling
n Convert machine-dependent data to XDR

¤ Server side
n Convert XDR data to machine dependent representation

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.27

RPC mechanism

Caller

Client
Stub

RPC
protocol

Callee

Server
Stub

RPC
Protocol

Arguments

Request Reply

Return
Value

Arguments
Return
Value

Request Reply

27

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.28

Distributed Objects

¨ RPC based on distributed objects with an inheritance mechanism

¨ Create, invoke or destroy remote objects, and interact as if they are
local objects

¨ Data sent over network:
¤ References: class, object and method
¤ Method arguments

¨ CORBA early1990s, RMI mid-late 90s

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.29

Distributed Objects in CORBA defined using the
Interface Definition Language

IDL Stub

CLIENT

IDL
Skeleton

Object
Implementation

OBJECT REQUEST BROKER (ORB)

IDL
Skeleton

Object
Implementation

OBJECT REQUEST BROKER
(ORB 2)

GIOP/IIOP
General Inter-ORB Protocol/Internet Inter-Orb Protocol

29

COMPUTER SCIENCE DEPARTMENT

MONOLITHIC KERNELS

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.31

There are many dependencies (and interactions)
among the modules inside the OS [1/2]

¨ Several modules depend on synchronization primitives for
coordinating access to shared data structures with the kernel

¨ The virtual memory system depends on low-level hardware support for
address translation
¤ Support that is specific to a particular processor architecture

31

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.32

There are many dependencies (and interactions)
among the modules inside the OS [2/2]

¨ Both the file system and the virtual memory system share a common
pool of blocks of physical memory
¤ They also both depend on the disk device driver

¨ The file system can depend on the network protocol stack if the disk
is physically located on a different machine

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.33

OS Kernel Structure

Hardware Abstraction Layer

Processor Scheduling &
Synchronization

Buffer Allocation

Device Drivers

NetworkingWindow
ManagerFile

System
Virtual

Memory

System Calls
Exceptions
Interrupts

33

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.34

This has led operating system designers to wrestle
with a fundamental tradeoff

¨ By centralizing functionality in the kernel, performance is improved
¤ It makes it easier to arrange tight integration between kernel modules

¨ However, the resulting systems are less flexible, less easy to change,
and less adaptive to user or application needs

? Prevalence of monolithic kernels?

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.35

Where is the monolithic kernel used?

¨ Almost all widely used commercial operating systems, such as
Windows, MacOS, and Linux

¨ Monolithic is a bit of a misnomer, there are often large segments of
what users consider the OS that runs outside the kernel
¤ Either as utilities like the shell, or in system libraries, such as libraries to

manage the user interface

35

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.36

A key goal of operating systems is to be portable
across a wide variety of hardware platforms [1/2]

¨ This requires careful design of the hardware abstraction layer

¨ Portable interface to machine configuration and processor-specific
operations within the kernel

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.37

A key goal of operating systems is to be portable
across a wide variety of hardware platforms [2/2]

¨ Within the same processor family, such as an Intel x86
¤ Manufacturers use different machine-specific code to configure and manage

interrupts and hardware timers
¤ x86-based Mac vs x86-based Windows

¨ Across processor families, will need processor-specific code for process
and thread context switches
¤ Between an ARM and an x86 or
¤ Between a 32-bit and a 64-bit x86

37

Device drivers

? ISAs versus devices

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.39

Operating Systems try to accommodate a wide
variety of physical I/O devices

¨ There are only a handful of different instruction set architectures (ISA)
in wide use today:
¤ But there are a huge number of different types of physical I/O devices,

manufactured by a large number of companies
¤ There is diversity in the hardware interfaces to devices as well as in the

hardware chip sets for managing the devices

39

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.40

What is a dynamically installed device driver?

¨ Software to manage a specific device, interface, or chipset, that is
added to the kernel after it starts running
¤ To handle the devices that are present on a particular machine

¨ The device manufacturer typically provides the driver code, using a
standard interface supported by the kernel
¤ The kernel calls into the driver whenever it needs to read or write data to

the device

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.41

Dynamically Installed Device Drivers

¨ A recent survey found that approximately 70% of the code in the
Linux kernel was in device-specific software

¨ However, 90% of all system crashes were due to bugs in device
drivers, rather than in the operating system itself

41

COMPUTER SCIENCE DEPARTMENT

MICROKERNELS

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.43

The Microkernel Approach [1/2]

¨ An alternative to the monolithic kernel approach is to run as much of
the OS as possible in one or more user-level servers/services

¨ Structure OS by removing non-essential components from the kernel
¤ Implement other things as system/user programs
¤ Mach

¨ Provide minimal process and memory management

¨ Main function: Provide communication facility between client and
services
¤ Message passing

43

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.44

The Microkernel Approach [2/2]

¨ In monolithic kernels all the layers went in the kernel
¤ But this is not really necessary

¨ In fact, it may be best to put as little as possible in the kernel
¤ Bugs in the kernel can bring down the system instantly

¨ Contrast this with setting up user processes to have less power
¤ A bug may not be fatal

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.45

Getting there …

¨ Achieve high reliability by splitting OS into small, well-defined
modules
¤ The microkernel runs in the kernel mode
¤ The rest as relatively powerless ordinary user processes

¨ Running each device driver as a separate process?
¤ Bugs cannot crash the entire system

45

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.46

Communications in the microkernel

¨ Client and service/server never interact directly

¨ Indirect communications by exchanging messages with the microkernel

¨ Advantages
¤ Easier to port to different hardware
¤ More security and reliability

n Most services run as user, rather than kernel

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.47

Some examples

¨ The window manager on most operating systems works this way:
¤ Individual applications draw items on their portion of the screen by sending

requests to the window manager
¤ The window manager adjudicates which application window is in front or

in back for each pixel on the screen, and then renders the result
¤ If the system has a hardware graphics accelerator present, the window

manager can use it to render items more quickly

¨ Some systems have moved other parts of the operating system into
user-level servers: the network stack, the file system, device drivers,
and so forth

47

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.48

Another idea related to microkernels

¨ Put mechanisms for doing something in the kernel
¤ But not the policy

¨ Example: Scheduling
¤ Policy of assigning priorities to processes can be done in the user-mode
¤ The mechanism to look for the highest priority process and to schedule it is in

the kernel

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.49

The difference between monolithic/microkernel
design is often transparent to the programmer

¨ The location of the service can be hidden in a user-level library
¤ Calls go to the library, which casts the requests either as

n System calls or

n Reads and writes to the server through a pipe

¨ The location of the service can also be hidden inside the kernel
¤ The application calls the kernel as if the kernel implements the service

n But instead, the kernel reformats the request into a pipe that the service can read

49

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.50

Increased system function overhead can degrade
microkernel performance

¨ A microkernel design offers considerable benefit to the operating
system developer

¤ Easier to modularize and debug user-level services than kernel code

¨ Aside from a potential reliability improvement, however, microkernels
offer little in the way of visible benefit to end users and can slow
down overall performance considerably
¤ By inserting extra steps between the application and the services it needs

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.51

A hybrid model

¨ Some operating system services are run at user-level and some are in
the kernel
¤ Depending on the specific tradeoff between code complexity and

performance

51

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.52

Increased system function overhead can degrade
microkernel performance

¨ Windows NT: First release, layered microkernel
¤ Lower performance than Windows 95

¨ Windows NT 4.0 solution
¤ Move layers from user space to kernel space

¨ By the time Windows XP came around
¤ More monolithic than microkernel

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.53

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

¨ Thomas Anderson and Michael Dahlin. Operating Systems: Principles and Practice, 2nd
Edition. Recursive Books. ISBN: 0985673524/978-0985673529. [Chapters 2-3]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 2]

¨ Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapter 3, 4]

53

