
SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS
[PROCESSES]

Shrideep Pallickara
Computer Science

Colorado State University

The magic of fork()
To craft a process
 use thy mighty fork()
Return in two places
 Not one

The child, the parent’s clone
 each with IDs that
 whisper which is which

Pair with exec
 To untether and load a program
The child as if born anew
 ready for the new world that now unfolds

1

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.2

Frequently asked questions from the previous class
survey
¨ Are kernel tasks also processes?
¨ Virtual memory?
¨ Scheduling: how does the OS manage so many processes, pause/resume them,

manage/modify their priorities, etc.?
¨ How is the OS managing things that are developed in so many languages?
¨ Differences: kernel memory, user memory, physical memory, RAM
¨ Horizontal scaling (cloud computing); vertical scaling?
¨ Why are multiple cores necessary?
¨ What if there were no PCBs?
¨ Are some languages better suited for lower-level systems programming?
¨ Must there be a stack and a heap for every process?
¨ Connection between executable file name and process ID?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.3

Topics covered in this lecture

¨ Operations on processes
¤Creation
¤ Termination

¨ Process groups

¨ Buffer Overflows
¤One of the greatest security violations of all time

3

COMPUTER SCIENCE DEPARTMENT

OPERATIONS ON PROCESSES

Processes execute concurrently
Can be created and deleted dynamically.

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.5

Process Creation: A process may create new
processes during its execution

¨ Parent process: The creating process

¨ Child process: New process that was created
¤May itself create processes: Process tree

¨ All processes have unique identifiers
¤Processes have names; in most systems, this is a number (process ID)
¤ There is one ID per process

5

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.6

Example: Process tree in Solaris
Sched
pid=0

pageout
pid=2

init
pid=1

fsflush
pid=3

inetd

Xsession
telnet

csh

emacschrome

sdt_shel

csh

catls

dtlogin

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.7

Processes in UNIX

¨ init : Root parent process for all user processes

¨ Get a listing of processes with ps command
§ ps: List of all processes associated with user
§ ps –a : List of all processes associated with terminals
§ ps –A : List of all active processes

7

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.8

Resource sharing between a process and its child

¨ Child process may obtain resources directly from OS

¨ Child may be constrained to a subset of parent’s resources
¤Prevents any process from overloading system

¨ Parent process also passes along initialization data to the child
¤Physical and logical resources

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.9

Parent/Child processes:
Execution possibilities

¨ Parent executes concurrently with children

¨ Parent waits until some or all of its children terminate

9

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.10

Parent/Child processes:
Address space possibilities

¨ Child is a duplicate of the parent
¤Same program and data as parent

¨ Child has a new program loaded into it

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

FORK()
All processes in UNIX are created using the fork() system call.

When you come to a fork in the road, take it.
Yogi Berra.

11

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.12

Process creation in UNIX

¨ Process created using fork()
¤fork() copies parent’s memory image
¤ Includes copy of parent’s address space

¨ Parent and child continue execution at instruction after
fork()
¤Child: Return code for fork() is 0
¤Parent: Return code for fork() is the non-ZERO process-ID of new

child

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.13

fork() results in the creation of 2 distinct processes

Parent
PID=abc

…
…
id =fork()
…
…

Child
PID=xyz

…
…
id =fork()
…
…

Results in

id = xyz here id = 0 here

Child will
execute
from here

?
Do the parent and child
process share a stack or
heap?

13

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.14

Simple example:

#include <stdio.h>
#include <unistd.h>

int main(void) {
 int x;
 x=0;
 fork();
 x=1;
 …
}

Both parent and child
execute this after
returning from fork()

? Why is this the case?

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.15

Another example
#include <stdio.h>
#include <unistd.h>

int main () {
 printf(“Hello World\n”);
 fork();
 printf(“Hello World\n”);
 }

#include <stdio.h>
#include <unistd.h>

int main () {
 printf(“Hello World\n”);
 if (fork()==0) {
 printf(“Hello World\n”);
 }
}

Hello World
Hello World
Hello World

Hello World
Hello World

? How many hello worlds?

? How many hello worlds?

15

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.16

What happens when fork() fails?

¨ No child is created

¨ fork() returns -1 and sets errno
¤errno is a global variable in errno.h

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.17

If a system is short on resources OR
if limit on number of processes breached

¨ fork() sets errno to EAGAIN

¨ Some typical numbers for Solaris
§ maxusers: 2 less than number of MB of physical memory up to 1024

n Set up to 2048 manually in /etc/system file

§ mx_nprocs: Default: 16 x maxusers + 10
min = 138, max = 30,000

17

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.18

Take different paths depending on what happens
with fork()
childpid = fork();
if (childpid == -1) {
 perror(“Failed to fork”);
 return 1;
}
if (childpid == 0) {
 ….. child specific processing
} else {
 ….. parent specific processing
}

Child (any process) can use
getpid() to retrieve
its process ID

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.19

Creating a chain of processes

for (int i=1; i < 4; i++) {
 if (childid = fork()) {
 break;
 }
}

For each iteration:
Parent has non-ZERO childid
 So it breaks out

Child process
 Parent in NEXT iteration

1

2

3

4

value of i
when process leaves loop

19

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.20

Creating a process fan

for (int i=1; i < 4; i++) {
 if ((childid = fork()) <= 0) {
 break;
 }
}

Newly created process breaks out
Original process continues

4

1 2 3

value of i
when process leaves loop

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.21

Creation of a process tree
int i=0;
for (i=1; i < 4; i++) {
 if ((childid = fork()) == -1) {
 break;
 }
}

Original process has a 0 label
Value of i when created
Lower case letters: Process created with same i

Both parent and child
 go on to create processes in the next iteration0

2a 2b

1

3d3c3a 3b

21

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.22

Replacing a process’s memory space with a new
program

¨ Use exec() after the fork() in one of the two processes

¨ exec() does the following:
① Destroys memory image of program containing the call
② Replaces the invoking process’s memory space with a new program
③ Allows processes to go their separate ways

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.23

Replacing a process’s memory space with a new
program

¨ TRADITION:
¤Child executes new program
¤Parent executes original code

23

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.24

Launching programs using the shell is a two-step
process

¨ Example: user types ls on the shell

① Shell forks off a child process

② Child executes ls

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.25

But why is this the case?

¨ Allows the child to manipulate its file descriptors
¤After the fork()
¤But before the exec()

¨ Accomplish redirection of standard input, standard output, and
standard error

25

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.26

A parent can move itself from off the ready queue
and await child’s termination

¨ Done using the wait() system call.
¨ When child process completes, parent process resumes

fork()

wait()

exec() exit()

resumes
parent

child

Return value = Non-ZERO
 child PID

Return value=ZERO

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.27

wait/waitpid allows caller to suspend execution till
a child’s status is available

¨ Process status availability
¤Most commonly after termination
¤Also available if process is stopped

¨ waitpid(pid, *stat_loc, options)

§ pid== -1 : any child
§ pid > 0 : specific child
§ pid == 0 : any child in the same process group

§ pid < -1 : any child in process group abs(pid)

27

COMPUTER SCIENCE DEPARTMENT

PROCESS CREATION IN WINDOWS

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.29

Process creation in Windows

¨ CreateProcess handles

① Process creation

② Loading in a new program

¨ Parent and child’s address spaces are different from the start

29

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.30

CreateProcess takes up to 10 parameters

¨ Program to be executed

¨ Command line parameters that feed program

¨ Security attributes

¨ Bits that control whether files are inherited

¨ Priority information

¨ Window to be created?

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.31

Process Management on Windows

¨ WIN 32 has about 100 other functions
¤Managing & Synchronizing processes

31

COMPUTER SCIENCE DEPARTMENT

PROCESS GROUPS

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.33

Process groups

¨ Process group is a collection of processes

¨ Each process has a process group ID

¨ Process group leader?
¤Process with pid==pgid

¨ kill treats negative pid as pgid
¤Sends signal to all constituent processes

33

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.34

Process Group IDs:
When a child is created with fork()

① Inherits parent’s process group ID

② Parent can change group ID of child by using setpgid

③ Child can give itself new process group ID
¤ Set process group ID = its process ID

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.35

Process groups

¨ By default, comprises:
① Parent (and further ancestors)

② Siblings

③ Children (and further descendants)

¨ A process can only send signals to members of its process
group
¤Signals are a limited form of inter-process communication used in Unix

35

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.36

Windows has no concept of a process hierarchy

¨ The only hint of a hierarchy?
¤When a process is created, parent is given a special token (called

handle)
n Use this to control the child

¨ However, parent is free to pass this token to some other process
¤ Invalidates hierarchy

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

PROCESS TERMINATIONS

37

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.38

Process terminations

¨ Normal exit (voluntary)
¤ E.g., successful compilation of a program

¨ Error exit (voluntary)
¤ E.g., trying to compile a file that does not exist

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.39

Process terminations

¨ Fatal error (involuntary)
¤Program bug

n Referencing non-existing memory, dividing by zero, etc

¨ Killed by another process (involuntary)
¤ Execute system call telling OS to kill some other process
¤Killer must be authorized to do in the killee
¤Unix: kill Win32: TerminateProcess

39

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.40

Process terminations:
This can be either normal or abnormal

¨ OS deallocates the process resources
¤Cancel pending timers and signals
¤Release virtual memory resources and locks
¤Close any open files

¨ Updates statistics
¤Process status and resource usage

¨ Notifies parent in response to a wait()

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.41

On termination a UNIX process DOES NOT fully release resources
until a parent waits for it

¨ If the parent is not waiting when the child terminates?
¤ The process becomes a zombie

¨ Zombie is an inactive process
¤Still has an entry in the process table

41

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.42

Zombies and termination

¨ When a process terminates, its orphaned children and zombies
are adopted
¤ This special system process is init

¨ Some more about init
① Has a pid of 1

② Periodically waits for children

③ Eventually orphaned zombies are removed

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.43

Normal termination of processes

¨ Return from main

¨ Implicit return from main
¤ Function falls off the end

¨ Call to exit, _Exit or _exit

43

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.44

Abnormal termination

¨ Call abort

¨ Process signal that causes termination
¤Generated by an external event: keyboard Ctrl-C
¤ Internal errors: Accessing illegal memory location

¨ Consequences
¤Core dump
¤User-installed exit handler not called

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

PROTECTION & SECURITY

45

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.46

Protection and Security

¨ Control access to system resources
¤ Improve reliability

¨ Defend against use (misuse) by unauthorized or incompetent users

¨ Examples
¤ Ensure process executes within its own space
¤ Force processes to relinquish control of CPU
¤ Device-control registers accessible only to the OS

n E.g., Why the Security of USB Is Fundamentally Broken
https://www.wired.com/2014/07/usb-security/

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.47

Buffer overflows:

¨ When? Program copies data into a variable for which it has
not allocated enough space

char buf[80];
printf(“Enter your first name:”);
scanf(“%s”, buf);

If user enters string > 79 bytes ?
 – The string AND string terminator do not fit.

47

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.48

Buffer Overflows:
Fixing the example problem

char buf[80];
printf(“Enter your first name:”);
scanf(“79%s”, buf);

Program now reads at most 79 characters into buf

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.49

Automatic variables (local variables)

¨ Allocated/deallocated automatically when program flow enters
or leaves the variable’s scope

¨ Allocated on the program stack

¨ Stack grows from high-memory to low-memory

49

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.50

A process in memory

stack

heap

data

text
{Global variables}

{Function parameters,
 return addresses,
 and local variables}

max

0

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.51

A rough anatomy of the program stack

base

top

1024

1000
{Local variables}

{Unused gaps may exist}

{return address}

To align things on the
word boundary

51

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.52

A function that checks password: Susceptible to
buffer overflow

int checkpass(void) {
 int x;
 char a[9];
 x =0;
 printf(“Enter a short word: ”);
 scanf(“%s”, a);
 if (strcmp(a, “mypass”) == 0)
 x =1;
 return x;
}

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.53

Stack layout for our unsafe function

base

top

1024

1000

a

Unused

return address

saved frame pointer
1020

1016
x

1012

1009

Overflow can
change the value of x

A long password may
overwrite this too

53

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.54

Problems with buffer overflow

¨ Function will try to return to an address space outside the
program
¤Segmentation fault or core dump
¤Programs may lose unsaved data
¤ In the OS, such a function can cause the OS to crash!

54

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.28

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.55

One of the greatest security violations of all time:
November 2, 1988

¨ Exploited 2 bugs in Berkeley UNIX

¨ Worm: Self replication program

¨ Bought down most of the Sun and VAX systems on the internet
within a few hours

55

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.56

Worm had two programs

① Bootstrap (99 lines of C, l1.c)

② Worm proper

¨ Both these programs compiled and executed on the system
under attack

56

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.29

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.57

Synopsis of the worm’s modus operandi

① Spread the bootstrap to machines

② Once the bootstrap runs:
¤ Connects back to its origins
¤ Download worm proper
¤ Execute worm

③ Worm then attempts to spread bootstrap

57

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.58

Infecting new machines: Method 1 & 2
Violate trust

¨ Method 1: Run the remote shell rsh
¤Machines used to trust each other, and would willingly run it
¤Use this to upload the worm

¨ Method 2: sendmail

58

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.30

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.59

Method 3: Buffer overflow in the finger daemon
(finger name@site)

¨ finger daemon runs all the time on sites, and responds to
queries

¨ The worm called finger with a handcrafted 536-byte string as
a parameter.
¤Overflowed daemon’s buffer & overwrote its stack

¨ Daemon did not return to main(), but to a procedure in the
536-bit string on stack

¨ Next try to get a shell by executing /bin/sh

59

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.60

Far too many worms can grind things to a halt

¨ Break user passwords

¨ Check for copies of worm on machine
¤ Exit if there is a copy 6 out of 7 times

n This is in place to cope with a situation where sys admin starts fake worm to fool
the real one

¨ Use of 1 in 7 caused far too worms
¤Machines ground to a halt

60

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.31

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.61

Consequences

¨ $10K fine, 3 years probation and 400 hours community service

¨ Legal costs $150,000

61

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.62

The contents of the slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.
Prentice Hall. ISBN: 013359162X/ 978-0133591620 [Chapter 2]

¨ Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapters 2 & 3]

¨ CS 451: Operating Systems (Colorado State University) Help Session 2B: Forking in C
by Rink Dewri. Professor: Shrideep Pallickara, GTA: Rinku Dewri

62

