
SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS
[PROCESSES]

Shrideep Pallickara
Computer Science

Colorado State University

A process in action
Processes and programs are betrothed
A program’s static dormant even
But get it to execute and a process materializes

Many a process, have you?
Take turns running
An illusion of concurrency

1

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.2

Frequently asked questions from the previous class
survey
¨ Privileged instructions
¨ Interrupts?
¨ What is a clock? How does it work?
¨ Traps? Triggered by hardware or software

¤ Kernel mode transitions
¨ User-kernel mode transitions: how expensive? What if they don’t occur for

some reason? Are there kernel-user mode transitions?
¨ Why are clock cycles important?
¨ If files from the OS are in the RAM, when there is a power loss will the files

be gone forever?
¨ What is disk latency? Quantum?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.3

Topics covered in this lecture

¨ Processes

¨ A process in memory
¨ Process Control Blocks
¨ Interrupts & Context switches
¨ Operations on processes

¤Creation

3

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.4

Processor exceptions

¨ A processor exception is a hardware event caused by user
program behavior that causes a transfer of control to the kernel

¨ A processor exception occurs whenever a process
¤Attempts to perform a privileged instruction
¤Accesses memory outside of its own memory region
¤Causes an arithmetic overflow. E.g., divide-by-zero
¤Accesses a word of memory with a non-aligned address
¤Attempts to write to read-only memory

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.5

User processes can also transition into the kernel
voluntarily

¨ To request that the kernel perform an operation on the user’s
behalf

¨ A system call is any procedure provided by the kernel that can
be called from the user level
¤ Examples include system calls to establish a connection to a web

server, to send or receive packets over the network, to create or
delete files, to read or write data into files, and to create a new user
process

5

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.6

To protect the kernel from misbehaving user
programs

¨ It is key that the hardware transfers control on a system call to a
pre-defined address
¤User processes cannot be allowed to jump to arbitrary places in the

kernel

¨ The kernel handles the details of:
¤Checking and copying arguments
¤Performing the operation, and
¤Copying return values back into the process’s memory

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.7

System calls provide the illusion that the kernel is
simply a set of library routines available to users
¨ Implementing system calls requires the operating system to define a

calling convention

¨ Once the arguments are in the correct format, the user-level
program can issue a system call by executing the trap instruction to
transfer control to the kernel

¨ The kernel implement its system calls in a way that protects itself
from all errors and attacks that might be launched
¤ Extreme version of defensive programming: always assume that system call

parameters are intentionally designed to be as malicious as possible!

7

COMPUTER SCIENCE DEPARTMENT

INTERRUPT VECTOR TABLE

You say, “Goodbye” and I say, “Hello, hello, hello”
I don't know why you say, “Goodbye”, I say, “Hello, hello, hello”
I don't know why you say, “Goodbye”, I say, “Hello”

Hello, Goodbye: The Beatles

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.9

When an interrupt, processor exception or system
call trap occurs …

¨ How does the processor know what code to run?

¨ The processor has a special register that points to an area of kernel
memory called the interrupt vector table

¨ The hardware determines which device caused the interrupt, if the
trap instruction was executed, or what exception condition occurred
¤ Thus, the hardware can select the right entry from the interrupt vector table

and invoke the appropriate handler

¨ The format of the interrupt vector table is processor-specific

9

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.10

The interrupt vector table on the x86

¨ Entries 0 – 31: are for different types of processor exceptions
¤anything related to arithmetic overflow (e.g.: divide-by-zero, bound

ranges, floating point exceptions etc.) and faults (page and segment)

¨ Entries 32 – 255 are for different types of interrupts
¤ Timer, keyboard, etc.

¨ By convention, entry-64 points to the system call trap handler

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.11

What about kernel to user mode transitions? When
do these happen?

¨ New process

¨ Resume after an interrupt, processor exception, or system call

¨ Switch to a different process

¨ User-level upcall
¤Most OS provide user programs with the ability to receive asynchronous

notification of events

11

COMPUTER SCIENCE DEPARTMENT

PERFORMANCE

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.13

There are two approaches to improving
performance

¨ Determine component bottlenecks
¤Replicate: Horizontal scaling
¤ Improve: Vertical scaling

13

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.14

To replicate or improve?

“If one ox could not do the job, they [pioneers] did not grow a
bigger ox, but used two oxen.”

⎼ Admiral Grace Murray Hopper
Computer Software pioneer

“If you were plowing a field, which would you rather use? Two
strong oxen or 1024 chickens?”

⎼ Seymour Cray
Computer Hardware pioneer

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

PROCESSES
And no one showed us to the land
And no one knows the where's or why's
But something stirs and something tries
And starts to climb toward the light

Echoes, Pink Floyd

15

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.16

Process

¨ The oldest and most important abstraction that an operating
system provides

¨ Supports the ability to have (psuedo) concurrent operation
¤ Even if there is only 1 CPU

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.17

What is a process?

¨ A process is the execution of an application program with
restricted rights
¤ It is the abstraction for protected execution provided by the kernel

17

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.18

All modern computers do several things at a time

¨ Browsing while e-mail client is fetching data

¨ Printing files while burning a Blu-Ray disc

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.19

Multiprogramming

¨ CPU switches from process-to-process quickly

¨ Runs each process for a few milliseconds

19

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.20

Multiprogramming and parallelism

¨ At any instant of time, the CPU is running only one process

¨ In the course of 1 second, it is working on several of them

¨ Gives the illusion of parallelism
¤Psuedoparallelism

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.21

A process is the unit of work in most systems

¨ Arose out of a need to compartmentalize and control
concurrent program executions

¨ A process is a program in execution

¨ Essentially an activity of some kind
¤Has a program, input, output, and a state

21

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.22

A process is just an instance of a program [1/2]

¨ In much the same way that an object is an instance of a class in
object-oriented programming

¨ Each program can have zero, one or more processes executing
it

¨ For each instance of a program, there is a process with its own
copy of the program in memory

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.23

A process is just an instance of a program [2/2]

¨ Conceptually each process has its own virtual CPU

¨ In reality, the CPU switches back-and-forth from process to
process

¨ Processes are not affected by the multiprogramming
¤Or relative speeds of different processes

23

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.24

An example scenario: 4 processes

A

B

C

D

A

B C

D

Four Program Counters

4 processes in
memory

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.25

Example scenario: 4 processes
Pr

oc
es

se
s

A

B

C

D

Time

• At any instant only one process executes
• Viewed over a long time, all processes have made progress

25

COMPUTER SCIENCE DEPARTMENT

PROGRAMS AND PROCESSES

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.27

Programs and processes

¨ Programs are passive, processes are active

¨ The difference between a program and a process is subtle, but
crucial

27

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.28

Analogy of a culinary-minded computer scientist
baking cake for his daughter
Analogy Mapping to real settings

Birthday cake recipe

Well-stocked kitchen:
flour, eggs, sugar, vanilla extract, etc

Computer scientist

Program (algorithm expressed
in a suitable notation)

Input Data

Processor (CPU)

• Process is the activity of
① Baker reading the recipe
② Fetching the ingredients
③ Baking the cake

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.29

Scientist’s son comes in screaming about a bee sting

¨ Scientist records where he was in the recipe
¤State of current process is saved

¨ Gets out a first aid book, follows directions in it

29

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.30

In our example, the scientist has switched to a higher
priority process …

¨ FROM Baking
¤Program is the cake recipe

¨ TO administering medical care
¤Program is the first-aid book

¨ When the bee sting is taken care of
¤Scientist goes back to where he was in the baking

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.31

Key concepts

¨ Process is an activity of some kind; it has a
¤Program
¤ Input and Output
¤State

¨ Single processor may be shared among several processes
¤Scheduling algorithm decides when to stop work on one process, and

start work on another process

31

COMPUTER SCIENCE DEPARTMENT

HOW A PROGRAM BECOMES A PROCESS

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.33

The journey from code to a becoming a process [1/2]

¨ Programmer types code in some high-level language

¨ A compiler converts that code into a sequence of machine
instructions and stores those instructions in a file
¤Called the program’s executable image
¤Compiler also defines any static data the program needs, along with

its initial values, and includes them in the executable image

33

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.34

The journey from code to a becoming a process [2/2]

¨ To run the program, the kernel copies the instructions and data
from the executable image into physical memory

¨ The kernel sets aside memory regions
¤ The execution stack, to hold local variables during procedure calls
¤ The heap, for any dynamically allocated data structures the program

might need

¨ Of course, to copy the program into memory, the kernel itself
must already be in memory, with its own stack and heap

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.35

A process in memory

stack

heap

data

text
{Global variables}

{Function parameters, return addresses,
 and local variables}

max

low

35

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.36

Memory conservation

¨ Most operating systems reuse memory wherever possible

¨ The OS stores only a single copy of a program’s instructions
¤ Even when multiple copies of the program are executed at the same

time

¨ Even so, a separate copy of the program’s data, heap, and
stack are needed

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.37

How a program becomes a process

¨ Allocation of memory is not enough to make a program into a
process

¨ Must have a process ID

¨ OS tracks IDs and process states to orchestrate system resources

37

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.38

Program in memory [1/2]

¨ Program image appears to occupy contiguous blocks of
memory

¨ OS maps programs into non-contiguous blocks

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.39

Program in memory [2/2]

¨ Mapping divides the program into equal-sized pieces: pages

¨ OS loads pages into memory

¨ When processor references memory on page
¤OS looks up page in table, and loads into memory

39

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.40

Advantages of the mapping process

¨ Allows large logical address space for stack and heap
¤No physical memory used unless actually needed

¨ OS hides the mapping process
¤Programmer views program image as logically contiguous
¤Some pages may not reside in memory

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.41

Finite State Machine

¨ An initial state

¨ A set of possible input events

¨ A finite number of states

¨ Transitions between these states

¨ Actions

41

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.42

Process state transition diagram: When a process
executes it changes state

new

ready running

waiting

terminated

I/O or event wait

scheduler dispatch

interrupt

exitadmitted

I/O or event
completion

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.43

How does the OS track processes?

¨ Via a data structure called the process control block, or PCB

¨ The PCB stores all the information the OS needs about a
particular process
¤Where it is stored in memory, where its executable image resides on

disk, which user asked it to execute, what privileges it has, etc.

¨ The set of the PCBs defines the current state of the OS

43

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.44

Each process is represented by a process control
block (PCB)

process state

process number

program counter

registers

memory limits

list of open files

PCB is a repository for any
information that varies from
process to process.

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.45

Where is the PCB stored?

¨ Since PCB contains the critical information for the process
¤ It must be kept in an area of memory protected from normal user

access

¨ Maintained in kernel memory

45

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.46

An example of CPU switching between processes

Save state into PCBA

Reload state from PCBB

Save state into PCBB

Reload state from PCBA

Process A Operating System Process B

idle

idle

idle

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

THERE’S AN APP FOR THAT!

47

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.48

What can be at the user level, should be.

¨ Allow user programs to create and manage their own processes

¨ If creating a process is something a process can do, then anyone
can build a new version of any of these applications
¤Without recompiling the kernel or forcing anyone else to use it

¨ Instead of a single program that does everything, we can
create specialized programs for each task, and mix-and-match
what we need
¤ There’s an app for that!

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

INTERRUPTS & CONTEXTS

49

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.50

Interrupts and Contexts

¨ Interrupt causes the OS to change CPU from its current task to
run a kernel routine

¨ Save current context so that suspend and resume are possible

¨ Context is represented in the PCB
¤Value of CPU registers
¤Process state
¤Memory management information

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.51

Context switch refers to switching from one process
to another

① Save state of current process

② Restore state of a different process

¨ Context switch time is pure overhead
¤No useful work done while switching

51

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.52

Factors that impact the speed of the context switch

¨ Memory speed

¨ Number of registers to copy

¨ Special instructions for loading/storing registers

¨ Memory management: Preservation of address space

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.53

The contents of this slide-set are based on the
following references
¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.

Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 2].

¨ Thomas Anderson and Michael Dahlin. Operating Systems: Principles and Practice, 2nd
Edition. Recursive Books. ISBN: 0985673524/978-0985673529. [Chapters 1-2]

¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

53

