
SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.1COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS

[PROCESS SYNCHRONIZATION]

Shrideep Pallickara
Computer Science

Colorado State University

Monitors and their Shiny Armor
Semaphores getting on your nerve?
 A missed wait here
 A misplaced signal there
Deadlocks, inconsistency we observe

Monitors to the rescue
 Encapsulating synchronization
 For smooth, correct operation
With nary a miscue

1

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.2

Frequently asked questions from the previous class
survey
¨ Critical section

¤ Should there always be a process in a critical section?
¤ Can a process be forced to leave its critical section?
¤ How ”long” (time) should a critical section be?

¨ Priority inversion: Why can’t the higher priority process preempt?
¨ Do the discussions about synchronization across processes apply to threads as well?
¨ Spinlocks

¤ What if the code it protects is very computationally expensive?
¨ Producer consumers

¤ Equal numbers of each? Allowed to switch roles?
¨ Mutex vs semaphore

¤ Mutex: provides mutual exclusion; binary state; only one process in the critical section
¤ Semaphores: Used for signaling; can be initialized to > 1; allows multiple threads to access simulataneously

¨ Implications for synchronization in programming languages?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.3

Topics covered in the lecture

¨ Classical process synchronization problems
¤Readers Writers
¤Dining philosopher’s problem

¨ Monitors
¤Solving dining philosopher's problem using monitors

¨ Midterm

3

L11.4COMPUTER SCIENCE DEPARTMENTTHE READERS-WRITERS PROBLEM L10.4

“Classic.” A book which people praise and don't read.
Mark Twain

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.5

The Readers-Writers problem

¨ A database is shared among several concurrent processes

¨ Two types of processes
¤Readers
¤Writers

5

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.6

Readers-Writers: Potential for adverse effects

¨ If two readers access shared data simultaneously?
¤No problems

¨ If a writer and some other reader (or writer) access shared data
simultaneously?
¤Chaos

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.7

Writers must have exclusive access to shared
database while writing

¨ FIRST readers-writers problem:
¤No reader should wait for other readers to finish; simply because a

writer is waiting
n Writers may starve

¨ SECOND readers-writers problem:
¤ If a writer is ready, it performs its write ASAP

n Readers may starve

7

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.8

Solution to the FIRST readers-writers problem

¨ Variable int readcount
¤ Tracks how many readers are reading the database

¨ Semaphore mutex {1}
¤ Ensure mutual exclusion when readcount is accessed

¨ Semaphore wrt {1}
① Mutual exclusion for the writers
② First (last) reader that enters (exits) critical section

n Not used by readers, when other readers are in their critical section

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.9

The Writer: When a writer “signals” either a waiting
writer or the readers resume

do {

 writing is performed

} while (TRUE);

wait(wrt);

signal(wrt);

When:
 writer in critical section
 and if n readers waiting

1 reader is queued on wrt
(n-1) readers queued on mutex

9

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.10

The Reader process
do {

 reading is performed

} while (TRUE);

wait(mutex);
readcount++;
if (readcount ==1) {
 wait(wrt);
}
signal(mutex);

wait(mutex);
readcount--;
if (readcount ==0) {
 signal(wrt);
}
signal(mutex);

When:
 writer in critical section
 and if n readers waiting

1 is queued on wrt
(n-1) queued on mutex

mutex for mutual
exclusion to readcount

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.11COMPUTER SCIENCE DEPARTMENT

THE DINING PHILOSOPHERS PROBLEM

Of what use is a philosopher who doesn't hurt
anybody's feelings?

Diogenes

11

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.12

The situation

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.13

The Problem

① Philosopher tries to pick up two closest {LR} chopsticks

② Pick up only 1 chopstick at a time
¤ Cannot pick up a chopstick being used

③ Eat only when you have both chopsticks

④ When done; put down both the chopsticks

13

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.14

Why is the problem important?

¨ Represents allocation of several resources
¤AMONG several processes

¨ Can this be done so that it is:
¤Deadlock free
¤Starvation free

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.15

Dining philosophers: Simple solution [1/2]

¨ Each chopstick is a semaphore
¤Grab by executing wait()
¤Release by executing signal()

¨ Shared data
¤ semaphore chopstick[5];
¤All elements are initialized to 1

15

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.16

Dining philosophers: Simple solution [2/2]

do {

 //eat

 //think

} while (TRUE);

wait(chopstick[i]);
wait(chopstick[(i+1)%5]);

signal(chopstick[i]);
signal(chopstick[(i+1)%5]);

Deadlock:
 If all processes
access chopstick with
same hand

We will look at solution with monitors

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.17COMPUTER SCIENCE DEPARTMENT

MONITORS

And still they lead me back
To the long winding road
You left me standing here
A long, long time ago
Don't leave me waiting here
Lead me to your door

The Long and Winding Road, John Lennon/Paul McCartney

17

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.18

Overview of the semaphore solution

¨ Processes share a semaphore mutex
¤ Initialized to 1

¨ Each process MUST execute
¤ wait before entering critical section
¤ signal after exiting critical section

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.19

Incorrect use of semaphores can lead to timing
errors

¨ Hard to detect
¤Reveal themselves only during specific execution sequences

¨ If correct sequence is not observed
¤2 processes may be in critical section simultaneously

¨ Problems even if only one process is not well behaved

19

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.20

Incorrect use of semaphores: [1/3]
Interchange order of wait and signal

do {

 critical section

 remainder section

} while (TRUE);

signal(mutex);

wait(mutex);

Problem:
 Several processes
simultaneously active
in critical section

NB: Not always reproducible

? What if?

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.21

Incorrect use of semaphores: [2/3]
Replace signal with wait

do {

 critical section

 remainder section

} while (TRUE);

wait(mutex);

wait(mutex);
Problem:
 Deadlock!

? What if?

21

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.22

Incorrect use of semaphores: [3/3]
What if you omit signal AND/OR wait?

do {

 critical section

 remainder section

} while (TRUE);

wait(mutex);

signal(mutex);
Omission:
 Deadlock!

Omission:
Mutual exclusion
violated? Omission?

? Omission?

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.23

When programmers use semaphores incorrectly
problems arise

¨ We need a higher-level synchronization construct
¤Monitor

¨ Before we move ahead: Abstract Data Types
¤ Encapsulates private data with

n Public methods to operate on them

23

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.24

A monitor is an abstract data type

¨ Mutual exclusion provided within the monitor

¨ Contains:
¤Declaration of variables

n Defining the instance’s state

¤ Functions that operate on these variables

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.25

Monitor construct ensures that only one process at a
time is active within monitor

monitor monitor name {

 //shared variable declarations

 function F1(..) {.. .}

 function F2(..) {.. .}

 function Fn(..) {.. .}

 initialization code(..) {.. .}

}

25

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.26

Programmer does not code synchronization
constraint explicitly

shared data

initialization
code

…

operations

Entry Queue

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.27

Basic monitor scheme not sufficiently powerful

¨ Provides an easy way to achieve mutual exclusion

¨ But … we also need a way for processes to block when they
cannot proceed

27

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.28

This blocking capability is provided by the condition
construct

¨ The condition construct
¤condition x, y;

¨ Operations on a condition variable
¤wait: e.g. x.wait()

n Process invoking this is suspended UNTIL

¤signal: e.g. x.signal()
n Resumes exactly-one suspended process
n If no process waiting; NO EFFECT on state of x

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.29

Semantics of wait and signal

¨ x.signal() invoked by process P
¨ Q is the suspended process waiting on x

¨ Signal and wait: P waits for Q to leave monitor
¨ Signal and continue: Q waits till P leaves monitor

¨ PASCAL: When thread P calls signal
¤ P leaves immediately
¤ Q immediately resumed

29

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.30

Difference between the signal() in semaphores
and monitors

¨ Monitors {condition variables}: Not persistent
¤ If a signal is performed and no waiting threads?

n Signal is simply ignored

¤During subsequent wait operations
n Thread blocks

¨ Semaphores
¤Signal increments semaphore value even if there are no waiting

threads
n Future wait operations would immediately succeed!

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.31COMPUTER SCIENCE DEPARTMENT

DINING PHILOSOPHERS USING MONITORS

Stay on the streets of this town
And they'll be carvin’ you up alright
They say you gotta stay hungry
Hey baby, I'm just about starving’ tonight

Dancing in the Dark, Bruce Springsteen

31

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.32

Dining-Philosophers Using Monitors
Deadlock-free
enum {THINKING,HUNGRY,EATING} state[5];

¨ state[i] = EATING only if
§ state[(i+4)%5] != EATING &&
state[(i+1)%5] != EATING

¨ condition self[5]
¤Delay self when HUNGRY but unable to get chopsticks

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.33

Sequence of actions

¨ Before eating, must invoke pickup()
¤May result in suspension of the philosopher process
¤After completion of operation, philosopher may eat

DiningPhilosophers.pickup(i);
 ...

 eat
 ...
DiningPhilosophers.putdown(i);

33

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.34

The pickup() and putdown() operations

pickup(int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING) {
 self[i].wait();
 }
}

putdown(int i) {
 state[i] = THINKING;
 test((i+4)%5);
 test((i+1)%5);
}

Suspend self if unable
to acquire chopstick

Check to see if person on
left or right can use the
chopstick

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.35

test() to see if philosopher can eat

test(int i) {
 if (state[(i+4)%5] != EATING &&
 state[i] == HUNGRY &&
 state[(i+1)%5 != EATING]) {

 state[i] = EATING;
 self[i].signal();
 }
}

Eat only if HUNGRY and
Person on Left AND Right
are not eating

Signal a process that was
suspended while trying to eat

35

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.36

Possibility of starvation

¨ Philosopher i can starve if eating periods of philosophers on
left and right overlap

¨ Possible solution
¤ Introduce new state: STARVING
¤Chopsticks can be picked up if no neighbor is starving

n Effectively wait for neighbor’s neighbor to stop eating
n REDUCES concurrency!

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.37COMPUTER SCIENCE DEPARTMENT

MID-TERM

37

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.38

Mid-term on Thursday, March 6th @ 9:30 am

¨ Held in class
¤ Those taking it at the Alternative Testing Center please work with SDC

¨ Accounts for 20% of your course grade

¨ Points distribution
¤Processes and Inter-Process Communications: 30 points

¤ Threads: 20 points

¤Process Synchronization (including atomic transactions): 30 points

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L11.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L11.39

The contents of this slide set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 5]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 2]

39

