
SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.1COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS
[PROCESS SYNCHRONIZATION]

Shrideep Pallickara
Computer Science

Colorado State University

On locks, critical section, and waits
Use locks with care
For only one can find the right key
Others are left stuck

Once you unlock
step into the critical section
where shared resources await

When done, don’t just flee
perform housekeeping tasks
so others may have their turn

Signal and wait simplify chores
but use semaphores
to avoid the busy wait

1

L10.2INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Frequently asked questions from the previous class
survey
¨ Doesn’t constant looping waste CPU resources?
¨ Can there be a software only solution?
¨ Atomic operations
¨ What if multiple processes invoke at the exact same clock cycle?
¨ Must all processes have a critical section?
¨ Can there be more than one critical section?
¨ Can we have some measure of control to decide who gets to enter the critical

section?
¨ What happens if a process fails in the critical section?
¨ Typical code sizes: entry, critical section, and exit
¨ An example where multiple processes are waiting to enter the critical section?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.3INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Topics covered in the lecture

¨ TestAndSet
¨ Using TestAndSet to satisfy critical section requirements
¨ Semaphores
¨ Classical process synchronization problems

3

L10.4INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Critical Section: Quick Review

¨ There can be only one critical section in
a process

¨ There are no limits to the number of processes
that are trying to access a shared resource

¨ All processes that access the same shared
resource must have similar entry and
exit sections

¨ It is OK to miss the exit section in one of the processes
¨ If there are N processes accessing a shared resource it is OK for one

process to access that resource directly (i.e., without using the entry/exit
bookends)

TRUE FALSE

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.5COMPUTER SCIENCE DEPARTMENT

TEST AND SET

In school, you’re taught a lesson and then given a test.
In life, you’re given a test that teaches you a lesson.

Tom Bodett

5

L10.6INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

TestAndSet()

boolean TestAndSet(boolean *target) {

 boolean rv = *target;
 *target = TRUE;
 return rv;
}

Sets target to true and returns old value of target

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.7INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

TestAndSet: Shared boolean variable lock
initialized to false

do {

 critical section

 remainder section

} while (TRUE);

while (TestAndSet(&lock)) {;}

lock = FALSE;

If two TestAndSet() are executed
simultaneously, they will be executed
sequentially in some arbitrary order

To break out:
Return value returned by TestAndSet
should be FALSE

7

L10.8COMPUTER SCIENCE DEPARTMENT

USING TEST-AND-SET TO SATISFY
CRITICAL SECTION REQUIREMENTS

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.9INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Using TestAndSet to satisfy all critical section
requirements

¨ N processes

¨ Data structures initialized to FALSE
§ boolean waiting[n];

§ boolean lock;

These data structures are
maintained in shared memory.

9

L10.10INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The entry section for process i

waiting[i] = TRUE;
key = TRUE;

while (waiting[i] && key) {
 key = TestAndSet(&lock);
}

waiting[i] = FALSE;

First process to execute TestAndSet will find key == false ;
 ENTER critical section
 EVERYONE else must wait

Will break out only if
waiting[i]==FALSE OR key==FALSE

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.11INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The exit section: Part I
Finding a suitable waiting process

j = (i + 1)%n;

while ((j != i) && !waiting[j]) {
 j = (j+1)%n
}

If a process is not waiting
move to the next one

Will break out at j==i if
there are no waiting
processes

If a process is
waiting:
 break out of loop

11

L10.12INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The exit section: Part II
Finding a suitable waiting process

if (j==i) {
 lock = FALSE;
} else {
 waiting[j] = FALSE;
}

Could NOT find a suitable
waiting process

Found a suitable waiting
process

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.13INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Mutual exclusion

¨ The variable waiting[i] can become false ONLY if
another process leaves its critical section
¤Only one waiting[i] is set to FALSE

13

L10.14INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Progress

¨ A process exiting the critical section
① Sets lock to FALSE

 OR
② waiting[j] to FALSE

¨ Allows a process that is waiting to proceed

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.15INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Bounded waiting requirement

¨ Scans waiting[] in the cyclic ordering
 (i+1, i+2, … n-1, 0, …, i-1)

¨ ANY waiting process trying to enter critical section will do so in
(n-1) turns

j = (i + 1)%n;

while ((j != i) && !waiting[j]) {
 j = (j+1)%n
}

15

L10.16COMPUTER SCIENCE DEPARTMENT

SEMAPHORES

Semaphore: apparatus for signaling
from Ancient Greek σῆμα (sêma) 'sign, token’,
and Greek -φόρος (-phóros) 'bearer, carrier'

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.17INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Semaphores

¨ Semaphore S is an integer variable

¨ Once initialized, accessed through atomic operations
§ wait()

§ signal()

17

L10.18INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Modifications to the integer value of semaphore
execute indivisibly

wait(S) {
 while (S<=0) {
 ; //no operation
 }
 S--;
}

signal(S) {
 S++;
}

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.19INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Types of semaphores

¨ Binary semaphores
¤ The value of S can be 0 or 1

n Also known as mutex locks

¨ Counting semaphores
¤Value of S can range over an unrestricted domain

19

L10.20INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Using the Binary semaphore to deal with the critical
section problem

do {

 critical section

 remainder section

} while (TRUE);

wait(mutex);

signal(mutex);

mutex is initialized to 1

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.21INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Suppose we require S2 to execute only after S1
has executed

S1; S2;

PROCESS P1 PROCESS P2

Semaphore synch is initialized to 0

signal(synch);

wait(synch);

Wait for synch to be > 0

Set synch to 1

21

L10.22INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The counting semaphore

¨ Controls access to a finite set of resource instances

¨ INITIALIZED to the number of resources available

¨ Resource Usage
§ wait(): To use a resource
§ signal(): To release a resource

¨ When all resources are being used: S==0
§ Block until S > 0 to use the resource

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.23INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Problems with the basic semaphore implementation

¨ {C1} If there is a process in the critical section
¨ {C2} If another process tries to enter its critical section

¤Must loop continuously in entry code
¤Busy waiting!

n Some other process could have used this more productively!

¤Sometimes these locks are called spinlocks
n One advantage: No context switch needed when process must wait on a lock

23

L10.24INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Overcoming the need to busy wait

¨ During wait if S==0
¤ Instead of busy waiting, the process blocks itself
¤Place process in waiting queue for S
¤Process state switched to waiting

¤CPU scheduler picks another process to execute

¨ Restart process when another process does signal
¤Restarted using wakeup()
¤Changes process state from waiting to ready

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.25INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Defining the semaphore

typedef struct {
 int value;
 struct process *list;
} semaphore;

list of processes

25

L10.26INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The wait() operation to eliminate busy waiting

wait(semaphore *S){
 Sàvalue--;

 if (Sàvalue <0) {
 add process to Sàlist;
 block();
 }

} block() suspends the
 process that invokes it

If value < 0
abs(value) is the number
of waiting processes

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.27INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The signal() operation to eliminate busy waiting

signal(semaphore *S) {
 Sàvalue++;

 if (Sàvalue <= 0) {
 remove a process P from Sàlist;
 wakeup(P);
 }

} wakeup(P) resumes the
execution of process P

27

L10.28INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Deadlocks and Starvation: Implementation of semaphore
with a waiting queue

wait(S);
wait(Q);

signal(S);
signal(Q);

PROCESS P0

wait(Q);
wait(S);

signal(Q);
signal(S);

PROCESS P1

Say: P0 executes wait(S) and then P1 executes wait(Q)

P0 must wait till P1 executes signal(Q)
Cannot be executed
so deadlock

P1 must wait till P0 executes signal(S)

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.29INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Semaphores and atomic operations

¨ Once a semaphore action has started
¤No other process can access the semaphore UNTIL

n Operation has completed or process has blocked

¨ Atomic operations
¤Group of related operations
¤Performed without interruptions

n Or not at all

29

L10.30COMPUTER SCIENCE DEPARTMENT

PRIORITY INVERSION

L10.30

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.31INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Priority inversion

¨ Processes L, M, H (priority of L < M < H)

¨ Process H requires
¤Resource R being accessed by process L
¤ Typically, H will wait for L to finish resource use

¨ M becomes runnable and preempts L
¤Process (M) with lower priority affects how long process H has to wait

for L to release R

31

L10.32INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Priority inheritance protocol

¨ Process accessing resource needed by higher priority process
¤ Inherits higher priority till it finishes resource use
¤Once done, process reverts to lower priority

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.33COMPUTER SCIENCE DEPARTMENT

CLASSIC PROBLEMS OF SYNCHRONIZATION

Now you and me go parallel together and apart
And you keep your perfect distance and it's tearing at my heart
Did you never feel the distance?
You never tried to cross no line

Hand in Hand, Mark Knopfler, Dire Straits

33

L10.34INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The bounded buffer problem

¨ Binary semaphore (mutex)
¤Provides mutual exclusion for accesses to buffer pool
¤ Initialized to 1

¨ Counting semaphores
¤empty: Number of empty slots available to produce

n Initialized to n
¤full: Number of filled slots available to consume

n Initialized to 0

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.35INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Some other things to bear in mind

¨ Producer and consumer must be ready before they attempt to
enter critical section

¨ Producer readiness?
¤When a slot is available to add produced item

n wait(empty): empty is initialized to n

¨ Consumer readiness?
¤When a producer has added new item to the buffer

n wait(full) : full initialized to 0

Interpreting these variables:
How many slots are empty?
How many slots are full?

? Initializing Values

35

L10.36INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The Producer
do {
 produce item nextp

 add nextp to buffer

 remainder section

} while (TRUE);

wait(empty);
wait(mutex);

signal(mutex);
signal(full);

wait till slot available

Only producer OR consumer
can be in critical section

signal consumer
that a slot is available

Allow producer OR consumer
to (re)enter critical section

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.37INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The Consumer
do {

 remove item from buffer
 (nextc)

 consume nextc

} while (TRUE);

wait(full);
wait(mutex);

signal(mutex);
signal(empty);

wait till slot available
for consumption

Only producer OR consumer
can be in critical section

signal producer that a
slot is available to add

Allow producer OR consumer
to (re)enter critical section

37

L10.38COMPUTER SCIENCE DEPARTMENTTHE READERS-WRITERS PROBLEM L10.38

'Classic.' A book which people praise and don't read.
Mark Twain

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.39INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The Readers-Writers problem

¨ A database is shared among several concurrent processes

¨ Two types of processes
¤Readers
¤Writers

39

L10.40INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Readers-Writers: Potential for adverse effects

¨ If two readers access shared data simultaneously?
¤No problems

¨ If a writer and some other reader (or writer) access shared data
simultaneously?
¤Chaos

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.41INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Writers must have exclusive access to shared
database while writing

¨ FIRST readers-writers problem:
¤No reader should wait for other readers to finish; simply because a

writer is waiting
n Writers may starve

¨ SECOND readers-writers problem:
¤ If a writer is ready it performs its write ASAP

n Readers may starve

41

L10.42INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Solution to the FIRST readers-writers problem

¨ Variable int readcount
¤ Tracks how many readers are reading object

¨ Semaphore mutex {1}
¤ Ensure mutual exclusion when readcount is accessed

¨ Semaphore wrt {1}
① Mutual exclusion for the writers
② First (last) reader that enters (exits) critical section

n Not used by readers, when other readers are in their critical section

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.43INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The Writer: When a writer signals either a waiting
writer or the readers resume

do {

 writing is performed

} while (TRUE);

wait(wrt);

signal(wrt);

When:
 writer in critical section
 and if n readers waiting

1 reader is queued on wrt
(n-1) readers queued on mutex

43

L10.44INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The Reader process
do {

 reading is performed

} while (TRUE);

wait(mutex);
readcount++;
if (readcount ==1) {
 wait(wrt);
}
signal(mutex);

wait(mutex);
readcount--;
if (readcount ==0) {
 signal(wrt);
}
signal(mutex);

When:
 writer in critical section
 and if n readers waiting

1 is queued on wrt
(n-1) queued on mutex

mutex for mutual
exclusion to readcount

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.45INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The contents of this slide set are based on the
following references

¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts,
9th edition. John Wiley & Sons, Inc. ISBN-13: 978-1118063330.
[Chapter 5]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 2]

45

