(o370

Multithreaded Virtual Network Simulation

Homework 5

Assignment Review

You will implement a solution to a version of the Producer and Consumer problem, using a circular buffer.
High Level: we create a network of Nodes that shall exchange messages with its direct neighboring nodes
Your program will take a Seed, (N) nodes with (K) neighbors, and (B) buffer size as parameters.
VirtualNetworkSimulation is responsible for creating Nodes and initiating the simulation.

The Simulation class shall create a

O If K (num of neighbors) < N (total nodes) — 1, then each node is not connected to every other node. This means at least one pair
of nodes does not have a direct connection, and in this simulation they will not communicate.

O If K== N -1 then each node is a neighbor to each node
Each node will exchange messages with neighboring nodes
Each node has a MessageBuffer where messages from neighboring nodes Producer Thread are sent

Then the Node can consume using its Consumer Thread from its MessageBuffer

CS 370 - Operating Systems — Fall 2024 2

Which files are required?

VirtualNetworkSimulation.java
MessageButter.java
Consumet.java

Producer.java

Node.java

Message.java

Makefile

README.txt

CS 370 - Operating Systems — Fall 2024

[~

- threadPooiONodes: Node(]
- mg: Random

+ VirtualNetwerkSimulation{Leng, int, int, int)
+ main{String[]): void

- genarateOverlay() - intf][]
- report{Node, long, long, long, long): void
+ stanSimulation(): vold

+ denotes public, - denotes private. Format: (public/private) name(arg_types): return_type
CS 370 - Operating Systems - Fall 2024

VirtualNetworkSimulation.java

* Creates your Network: A network is a graph of Nodes with some ordering

. * Given N Nodes each with K neighboring Nodes, creates an overlay of

connections.

O This Overlay represents which Nodes can pass messages between each other.
* Determines number of messages to pass globally.

* At the end of the Simulation (once all Nodes signal that they are done), this
class shall collect and display the sums and counts of each Node and Total

CS 370 - Operating Systems — Fall 2024 5

T ———— . . T — —— - ¥ P T

Node.java %

* A Node is a vertice in the network graph and is responsible for producing

. M/N messages distributed among its K neighboring Nodes

* Has one private MessageBuffer instance accessed via public methods
getMessageFromBuffer() and putMessageInButfer(Message).

* Has K Producers and K Consumer threads

* Responsible for keeping track of messages sent and recetved Atomically.

CS 370 - Operating Systems - Fall 2024 6

MessageButfer.java

* Each Node has a MessageBuffer which is a FIFO circular bounded buffer
. * This array contains Messages instances

* This Buffer must be implemented in a thread safe manner for this to work

CS 370 - Operating Systems — Fall 2024 7

T —— e e e e " - R r————

Producer.java

CS 370 - Operating Systems — Fall 2024

Extends Thread, override public void run(){ ... Thread Logic ... }
Fach node has K Producer threads that can send to any Neighbor

An instance of this class produces messages to be send to other nodes
MessageBuffer using that Nodes public methods

Waits when the MessageButfer 1s full

Consumet.java

CS 370 - Operating Systems — Fall 2024

Extends Thread, @Override public void run() { ... Thread Logic ... }
FEach Node has K consumer Threads
This 1s where our messages (instances of the Message class) are consumed
These consumed messages come from Producers of neighboring nodes

Consumer must inform its src Node of messages consumed

Message.java

1. This is a data object Class that represents the Messages passed between

. Nodes via Producers and Message Buffers and processed by Consumers.

O Contains only three public class vars

" A string src

" A string dst

CS 370 - Operating Systems - Fall 2024

" A string messageValue

O Uses built in Java Object Serialization

10

v Y . po §

= HWS5 UML
VirtualNetworkSimulation Node MessageBuffer
<<Extends Thread>>
- lweadPooiOMNodes: Node(] - inlemalMessageBuller: Message(]
- mg: Random - nodekd- String - bufferCapacity: int
- g - Random

: VirtualNetworkSimulation{Long. int, int, int) : m: bOOhar;_ i + MessageBuffer(int) .

main{String[]): void B lelsnsg' ENM’E e(]s < + emplaceMessage(Message): Message

- genarateOverlay|) - intf][]
- report{Node, long, long, long, long): void
+ stanSimulation(): vold

Producer
<<Extends Thread>>

- src: Node

- producers: Producer()

- consumers: Consumer(]

- messageBuffer MessageSuffer

- totalMessagesSent: Atomiclong

- totalMessagesReceved: Atomicl.ong

- sumOfMessagesSent: AlomiclLong

- sumOfMessagesReceived. AlomicLong

+ polMessage|Message): Message
- Halper methods 1o be created as needed

Message

+ Producer{Node, Long)

- produceMessage(). Message

- sandMessage(Node, Message). Message
- logOutput(Message). void

* run(): void

- Heldper mathods o be created as needed

Consumer
<<Extends Thread>>

- 8rc: Node

+ Consumar(Noda)

- consumehMessage!). Message

- parseMessage{Message): void

- loglnput{Message): void

+ run|) void

- Helper methods to be created as needed

+ Node(String, Long, Long, Integer, Integar)
+ getNodelly): String

+ seiNeighbors{Node{]): void

* generaleMessage(): Long

+ galectDestination(): Node

* updateSentMessages(Message): void

+ updateRecervadMessages(Message) voiud
+ getMessagaFromBuffer(): Message

+ putMassageinBuffer() boolkean

+ reportTotal(): Long

+ repontCount(). Long

+ checkDone(): boolean

+ run(). void

- Helper mathods to be created &3 needed

+ e Stnng
+ dst: S¥ing
+ massageValue: Long

+ Massage(String, String, Long)

+ denotes public, - denotes private. Format: (public/private) name(arg_types): return_type

UML
Diagram

® This UML Diagram lists all

the required Classes and
Methods for you to
implement in this program.

* We just went over these

11

T =

Synchronization in Java

* Java has inbuilt monitors * Built in thread class can be
* Allows threads to have mutual extended and used
exclusion * Instantiate and use myThread.start()
* Allows threads thf; gbility to wait * (@Override run() to change what a
(block) for a condition to become true thread does

* Signaling is done using
* wait()

* notify() or notifyAll()

CS 370 - Operating Systems — Fall 2024 12

code

registers

code data

files

thread —— ;

registers

registers

registers

stack

stack

stack

Threads

public class PhilosopherThread
extends Thread

d

@Override
public void run()
// Thread entry point
single-threaded process multithreaded process }
CS 370 - Operating Systems — Fall 2024 13
T e TP e

Creating and Starting threads

public class PhilosopherThread extends Thread {
@Override
publieiveid run () {
// Thread entry point

}

PhilosopherThread Socrates = new PhilosopherThread(table, seat):;

Socrates.start(); //begins Socrates thread invokes the run() method

CS 370 - Operating Systems — Fall 2024

14

Synchronized methods

* A piece of logic marked with synchronized becomes a synchronized block,

. allowing only one thread to execute at any given time.

public synchronized void pickup(int 1) throws InterruptedException

d

/ /Synchronized code goes in here

b

CS 370 - Operating Systems — Fall 2024

15

T Y

* wait()

. * Causes current thread to wait until another thread invokes the notify() or notifyAll() method
o

notity()

* notity() wakes up one thread waiting for the lock

* notifyAll()

the threads from the list of threads waiting for the lock and wakes that thread up

CS 370 - Operating Systems — Fall 2024

* The notifyAll() method wakes up all the threads waiting for the lock; the JVM selects one of

16

T e . P ———— . P

https://www.baeldung.com/java-wait-notify

Java Dining Philosophers Example

® Please see the for

. Self Exercise 6 Java threads and Synchronization Example

In Teams > Self Exercises

CS 370 - Operating Systems - Fall 2021

17

https://teams.microsoft.com/l/message/19:6a11e040d75a40caaf2175c4c2f044ec@thread.tacv2/1727400109941?tenantId=afb58802-ff7a-4bb1-ab21-367ff2ecfc8b&groupId=318b4dcd-8ad5-4135-9777-0e428b8079d1&parentMessageId=1727400109941&teamName=CompSci%20CS370%20Fall24&channelName=Self%20Exercises&createdTime=1727400109941

ool

Raspberry P1

Topics

. * Intro to Raspberty Pi
* Setting up a Raspberry Pi

* Term Project Requirements

* Term Project Expectations
* Helpful Links

CS 370 - Operating Systems — Fall 2024 19

Why Raspberry Pi’s

. * Small and Portable
| s Cheap

* Well-Documented

e Versagle
* Support for many peripherals (thanks to Linux)

Third Best Selling Computer Brand in the World

CS 370 - Operating Systems — Fall 2024 20

Raspberry P1 Models

Raspberry P1 4 Model B+

1.5GHz 64-bit quad-core processor -
dual-band wireless LAN

Bluetooth 5.0/BLE

Gigabit Ethernet
Power-over-Ethernet support (with
separate PoE HAT)

e 2 x micro-HDMI ports (up to
4kp60 supported)

CS 370 - Operating Systems — Fall 2024 21

Raspberry Pi Setup =

TV / Monitor

= Can connect to monitor, keyboard,

. ' USB Power mousc
n ﬂ . Adapter
(Home Router]
MN = Usable as a normal desktop

Optionally use ss/ instead of a monitor

Keyboard

0000000000000
0000000000000

0000000000000
000000000000

Mouse

CS 370 - Operating Systems — Fall 2024 22

Raspberry Pi Operating Systems
Expect most groups to use Raspbian

~1© | O [) EEEEE
- . Other options are available - some
@ * ! pv?)l OS’s for specific use cases

LIBREELEC PINET WEATHER STATION

CS 370 - Operating Systems — Fall 2024 23

Programming l.anguages

Basically any language will work (Python, C, Java, C++,
Javascript, Ruby, Lisp, Rust, R, etc...)

Most projects done in Python or C

CS 370 - Operating Systems — Fall 2024 24

GPIO lLibraries

Python/C
e RPi.GPIO (Python)

o RPi.GPIO code samples
RPIO.GPIO (Python)
wiringPi (Python/C)
pigpio (Python/C/Javasctipt)

opiozero (Python)
becm?2835 (C)

CS 370 - Operating Systems — Fall 2024

https://pypi.org/project/RPi.GPIO/
https://elinux.org/RPi_GPIO_Code_Samples
https://pythonhosted.org/RPIO/
https://github.com/WiringPi/WiringPi-Python
http://abyz.me.uk/rpi/pigpio/python.html
https://gpiozero.readthedocs.io/en/stable/
https://www.airspayce.com/mikem/bcm2835/

Teem Broject Requirements

Project must involve:

. ® A single board computer (Raspberry Pr1)
o With WiFi capability + operating system

® Communication with at least one other computer
O Another board, desktop, assistant, etc.
® At least one sensing or interacting device

O Heat sensor, motion detector, camera, motor, controller, etc...

CS 370 - Operating Systems — Fall 2024 26

Term Project Expectations

o Originality

O Several groups with similar projects (temperature sensors, plant waterers, etc...)
© Come up with a unique selling point

B Find similar projects online, then do something different

e Thoroughness

© Think about the evaluations you’re performing - design careful experiments and
control for variables

O Try to learn something you couldn’t have guessed

CS 370 - Operating Systems — Fall 2024 27

Helpful Links

Help Guides Forums and Tutorials
Setup instructions Raspberry Pi forums / projects
. SSH with Raspberry Pi’s Hackaday Projects
Help videos Adafruit [earning Guides
FAQ’s Raspberry Pi subreddit
Embedded Linux wiki
CS 370 - Operating Systems — Fall 2024 28

T e . P ————

https://www.raspberrypi.org/help/
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/help/videos/
https://www.raspberrypi.org/documentation/faqs/
https://elinux.org/RPi_Hub
https://www.raspberrypi.org/forums/
https://projects.raspberrypi.org/en/
https://hackaday.io/projects?tag=raspberry%20pi
https://learn.adafruit.com/category/raspberry-pi
https://www.reddit.com/r/raspberry_pi/

Thank You

Questions?

	Slide 1: CS 370
	Slide 2: Assignment Review
	Slide 3: Which files are required?
	Slide 4
	Slide 5: VirtualNetworkSimulation.java
	Slide 6: Node.java
	Slide 7: MessageBuffer.java
	Slide 8: Producer.java
	Slide 9: Consumer.java
	Slide 10: Message.java
	Slide 11: UML Diagram
	Slide 12: Synchronization in Java
	Slide 13: Threads
	Slide 14: Creating and Starting threads
	Slide 15: Synchronized methods
	Slide 16: wait(), notify() and notifyAll()
	Slide 17: Java Dining Philosophers Example
	Slide 18: CS 370
	Slide 19: Topics
	Slide 20: Why Raspberry Pi’s
	Slide 21: Raspberry Pi Models
	Slide 22: Raspberry Pi Setup
	Slide 23: Raspberry Pi Operating Systems
	Slide 24: Programming Languages
	Slide 25: GPIO Libraries
	Slide 26: Term Project Requirements
	Slide 27: Term Project Expectations
	Slide 28: Helpful Links
	Slide 29: Thank You

