
CS 370

Multithreaded Virtual Network Simulation

Homework 5

Assignment Review

• You will implement a solution to a version of the Producer and Consumer problem, using a circular buffer.

• High Level: we create a network of Nodes that shall exchange messages with its direct neighboring nodes

• Your program will take a Seed, (N) nodes with (K) neighbors, and (B) buffer size as parameters.

• VirtualNetworkSimulation is responsible for creating Nodes and initiating the simulation.

• The Simulation class shall create a

o If K (num of neighbors) < N (total nodes) – 1, then each node is not connected to every other node. This means at least one pair
of nodes does not have a direct connection, and in this simulation they will not communicate.

o If K == N – 1 then each node is a neighbor to each node

• Each node will exchange messages with neighboring nodes

• Each node has a MessageBuffer where messages from neighboring nodes Producer Thread are sent

• Then the Node can consume using its Consumer Thread from its MessageBuffer

2CS 370 - Operating Systems – Fall 2024

Which files are required?

• VirtualNetworkSimulation.java

• MessageBuffer.java

• Consumer.java

• Producer.java

• Node.java

• Message.java

• Makefile

• README.txt
3CS 370 - Operating Systems – Fall 2024

CS 370 - Operating Systems - Fall 2024 4

VirtualNetworkSimulation.java

• Creates your Network: A network is a graph of Nodes with some ordering

• Given N Nodes each with K neighboring Nodes, creates an overlay of

connections.

o This Overlay represents which Nodes can pass messages between each other.

• Determines number of messages to pass globally.

• At the end of the Simulation (once all Nodes signal that they are done), this

class shall collect and display the sums and counts of each Node and Total

5CS 370 - Operating Systems – Fall 2024

Node.java

• A Node is a vertice in the network graph and is responsible for producing

M/N messages distributed among its K neighboring Nodes

• Has one private MessageBuffer instance accessed via public methods

getMessageFromBuffer() and putMessageInBuffer(Message).

• Has K Producers and K Consumer threads

• Responsible for keeping track of messages sent and received Atomically.

6CS 370 - Operating Systems - Fall 2024

MessageBuffer.java

• Each Node has a MessageBuffer which is a FIFO circular bounded buffer

• This array contains Messages instances

• This Buffer must be implemented in a thread safe manner for this to work

7CS 370 - Operating Systems – Fall 2024

Producer.java

• Extends Thread, override public void run(){ … Thread Logic … }

• Each node has K Producer threads that can send to any Neighbor

• An instance of this class produces messages to be send to other nodes

MessageBuffer using that Nodes public methods

• Waits when the MessageBuffer is full

8CS 370 - Operating Systems – Fall 2024

Consumer.java

• Extends Thread, @Override public void run() { … Thread Logic … }

• Each Node has K consumer Threads

• This is where our messages (instances of the Message class) are consumed

• These consumed messages come from Producers of neighboring nodes

• Consumer must inform its src Node of messages consumed

9CS 370 - Operating Systems – Fall 2024

Message.java

1. This is a data object Class that represents the Messages passed between

Nodes via Producers and Message Buffers and processed by Consumers.

o Contains only three public class vars

▪ A string src

▪ A string dst

▪ A string messageValue

o Uses built in Java Object Serialization

10CS 370 - Operating Systems - Fall 2024

UML

Diagram

• This UML Diagram lists all

the required Classes and

Methods for you to

implement in this program.

• We just went over these

11

• Java has inbuilt monitors

• Allows threads to have mutual
exclusion

• Allows threads the ability to wait
(block) for a condition to become true

• Signaling is done using

• wait()

• notify() or notifyAll()

Synchronization in Java

• Built in thread class can be
extended and used

• Instantiate and use myThread.start()

• @Override run() to change what a
thread does

12CS 370 - Operating Systems – Fall 2024

Threads

public class PhilosopherThread
extends Thread
{
 @Override
 public void run()
 {
 // Thread entry point

}
}

13CS 370 - Operating Systems – Fall 2024

Creating and Starting threads

public class PhilosopherThread extends Thread {

 @Override

 public void run() {

 // Thread entry point

 }

}

PhilosopherThread Socrates = new PhilosopherThread(table, seat);

Socrates.start(); //begins Socrates thread invokes the run() method

14CS 370 - Operating Systems – Fall 2024

Synchronized methods

• A piece of logic marked with synchronized becomes a synchronized block,

allowing only one thread to execute at any given time.

public synchronized void pickup(int i) throws InterruptedException

{

 //Synchronized code goes in here

}

15CS 370 - Operating Systems – Fall 2024

wait(), notify() and notifyAll()

• wait()

• Causes current thread to wait until another thread invokes the notify() or notifyAll() method

• notify()

• notify() wakes up one thread waiting for the lock

• notifyAll()

• The notifyAll() method wakes up all the threads waiting for the lock; the JVM selects one of

the threads from the list of threads waiting for the lock and wakes that thread up

16CS 370 - Operating Systems – Fall 2024

https://www.baeldung.com/java-wait-notify

Java Dining Philosophers Example

• Please see the code for

 Self Exercise 6 Java threads and Synchronization Example

In Teams > Self Exercises

CS 370 - Operating Systems - Fall 2021 17

https://teams.microsoft.com/l/message/19:6a11e040d75a40caaf2175c4c2f044ec@thread.tacv2/1727400109941?tenantId=afb58802-ff7a-4bb1-ab21-367ff2ecfc8b&groupId=318b4dcd-8ad5-4135-9777-0e428b8079d1&parentMessageId=1727400109941&teamName=CompSci%20CS370%20Fall24&channelName=Self%20Exercises&createdTime=1727400109941

CS 370

Raspberry Pi

Topics

• Intro to Raspberry Pi

• Setting up a Raspberry Pi

• Term Project Requirements

• Term Project Expectations

• Helpful Links

CS 370 - Operating Systems – Fall 2024 19

Why Raspberry Pi’s

• Small and Portable

• Cheap

• Well-Documented

• Versatile

• Support for many peripherals (thanks to Linux)

Third Best Selling Computer Brand in the World
CS 370 - Operating Systems – Fall 2024 20

Raspberry Pi Models

Raspberry Pi 4 Model B+

● 1.5GHz 64-bit quad-core processor

● dual-band wireless LAN

● Bluetooth 5.0/BLE

● Gigabit Ethernet

● Power-over-Ethernet support (with

separate PoE HAT)

● 2 x micro-HDMI ports (up to

4kp60 supported)
CS 370 - Operating Systems – Fall 2024 21

Raspberry Pi Setup

Can connect to monitor, keyboard,

mouse

Usable as a normal desktop

Optionally use ssh instead of a monitor

CS 370 - Operating Systems – Fall 2024 22

Raspberry Pi Operating Systems

Expect most groups to use Raspbian

(officially supported OS)

Other options are available - some

OS’s for specific use cases

CS 370 - Operating Systems – Fall 2024 23

Programming Languages

Basically any language will work (Python, C, Java, C++,
Javascript, Ruby, Lisp, Rust, R, etc…)

Most projects done in Python or C

CS 370 - Operating Systems – Fall 2024 24

GPIO Libraries

Python/C
● RPi.GPIO (Python)

○ RPi.GPIO code samples

● RPIO.GPIO (Python)

● wiringPi (Python/C)

● pigpio (Python/C/Javascript)

● gpiozero (Python)

● bcm2835 (C)

CS 370 - Operating Systems – Fall 2024 25

https://pypi.org/project/RPi.GPIO/
https://elinux.org/RPi_GPIO_Code_Samples
https://pythonhosted.org/RPIO/
https://github.com/WiringPi/WiringPi-Python
http://abyz.me.uk/rpi/pigpio/python.html
https://gpiozero.readthedocs.io/en/stable/
https://www.airspayce.com/mikem/bcm2835/

Term Project Requirements

Project must involve:
● A single board computer (Raspberry Pi)

○ With WiFi capability + operating system

● Communication with at least one other computer

○ Another board, desktop, assistant, etc.

● At least one sensing or interacting device

○ Heat sensor, motion detector, camera, motor, controller, etc...

CS 370 - Operating Systems – Fall 2024 26

Term Project Expectations

● Originality

○ Several groups with similar projects (temperature sensors, plant waterers, etc...)

○ Come up with a unique selling point

■ Find similar projects online, then do something different

● Thoroughness

○ Think about the evaluations you’re performing - design careful experiments and
control for variables

○ Try to learn something you couldn’t have guessed

CS 370 - Operating Systems – Fall 2024 27

Helpful Links

CS 370 - Operating Systems – Fall 2024 28

• Help Guides

○ Setup instructions

○ SSH with Raspberry Pi’s

○ Help videos

○ FAQ’s

○ Embedded Linux wiki

• Forums and Tutorials

○ Raspberry Pi forums / projects

○ Hackaday Projects

○ Adafruit Learning Guides

○ Raspberry Pi subreddit

https://www.raspberrypi.org/help/
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/help/videos/
https://www.raspberrypi.org/documentation/faqs/
https://elinux.org/RPi_Hub
https://www.raspberrypi.org/forums/
https://projects.raspberrypi.org/en/
https://hackaday.io/projects?tag=raspberry%20pi
https://learn.adafruit.com/category/raspberry-pi
https://www.reddit.com/r/raspberry_pi/

Thank You

Questions?

	Slide 1: CS 370
	Slide 2: Assignment Review
	Slide 3: Which files are required?
	Slide 4
	Slide 5: VirtualNetworkSimulation.java
	Slide 6: Node.java
	Slide 7: MessageBuffer.java
	Slide 8: Producer.java
	Slide 9: Consumer.java
	Slide 10: Message.java
	Slide 11: UML Diagram
	Slide 12: Synchronization in Java
	Slide 13: Threads
	Slide 14: Creating and Starting threads
	Slide 15: Synchronized methods
	Slide 16: wait(), notify() and notifyAll()
	Slide 17: Java Dining Philosophers Example
	Slide 18: CS 370
	Slide 19: Topics
	Slide 20: Why Raspberry Pi’s
	Slide 21: Raspberry Pi Models
	Slide 22: Raspberry Pi Setup
	Slide 23: Raspberry Pi Operating Systems
	Slide 24: Programming Languages
	Slide 25: GPIO Libraries
	Slide 26: Term Project Requirements
	Slide 27: Term Project Expectations
	Slide 28: Helpful Links
	Slide 29: Thank You

