(o370

Multithreaded Virtual Network Simulation

Homework 5




Assignment Review

You will implement a solution to a version of the Producer and Consumer problem, using a circular buffer.
High Level: we create a network of Nodes that shall exchange messages with its direct neighboring nodes
Your program will take a Seed, (N) nodes with (K) neighbors, and (B) buffer size as parameters.
VirtualNetworkSimulation is responsible for creating Nodes and initiating the simulation.

The Simulation class shall create a

O If K (num of neighbors) < N (total nodes) — 1, then each node is not connected to every other node. This means at least one pair
of nodes does not have a direct connection, and in this simulation they will not communicate.

O If K== N -1 then each node is a neighbor to each node
Each node will exchange messages with neighboring nodes
Each node has a MessageBuffer where messages from neighboring nodes Producer Thread are sent

Then the Node can consume using its Consumer Thread from its MessageBuffer
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Which files are required?

VirtualNetworkSimulation.java
MessageButter.java
Consumet.java

Producer.java

Node.java

Message.java

Makefile

README.txt
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- threadPooiONodes: Node(]
- mg: Random

+ VirtualNetwerkSimulation{Leng, int, int, int)
+ main{String[]): void

- genarateOverlay() - intf][]
- report{Node, long, long, long, long): void
+ stanSimulation(): vold

+ denotes public, - denotes private. Format: (public/private) name(arg_types): return_type
CS 370 - Operating Systems - Fall 2024




VirtualNetworkSimulation.java

* Creates your Network: A network is a graph of Nodes with some ordering

. * Given N Nodes each with K neighboring Nodes, creates an overlay of

connections.

O This Overlay represents which Nodes can pass messages between each other.
* Determines number of messages to pass globally.

* At the end of the Simulation (once all Nodes signal that they are done), this
class shall collect and display the sums and counts of each Node and Total
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Node.java %

* A Node is a vertice in the network graph and is responsible for producing

. M/N messages distributed among its K neighboring Nodes

* Has one private MessageBuffer instance accessed via public methods
getMessageFromBuffer() and putMessageInButfer(Message).

* Has K Producers and K Consumer threads

* Responsible for keeping track of messages sent and recetved Atomically.
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MessageButfer.java

* Each Node has a MessageBuffer which is a FIFO circular bounded buffer
. * This array contains Messages instances

* This Buffer must be implemented in a thread safe manner for this to work
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Producer.java
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Extends Thread, override public void run(){ ... Thread Logic ... }
Fach node has K Producer threads that can send to any Neighbor

An instance of this class produces messages to be send to other nodes
MessageBuffer using that Nodes public methods

Waits when the MessageButfer 1s full




Consumet.java
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Extends Thread, @Override public void run() { ... Thread Logic ... }
FEach Node has K consumer Threads
This 1s where our messages (instances of the Message class) are consumed
These consumed messages come from Producers of neighboring nodes

Consumer must inform its src Node of messages consumed




Message.java

1. This is a data object Class that represents the Messages passed between

. Nodes via Producers and Message Buffers and processed by Consumers.

O Contains only three public class vars

" A string src

" A string dst
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" A string messageValue

O Uses built in Java Object Serialization
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= HWS5 UML
VirtualNetworkSimulation Node MessageBuffer
<<Extends Thread>>
- lweadPooiOMNodes: Node(] - inlemalMessageBuller: Message(]
- mg: Random - nodekd- String - bufferCapacity: int
- g - Random

: VirtualNetworkSimulation{Long. int, int, int) : m: bOOhar;_ i + MessageBuffer(int) .

main{String[]): void B lelsnsg' ENM’E e(]s < + emplaceMessage(Message): Message

- genarateOverlay|) - intf][]
- report{Node, long, long, long, long): void
+ stanSimulation(): vold

Producer
<<Extends Thread>>

- src: Node

- producers: Producer()

- consumers: Consumer(]

- messageBuffer MessageSuffer

- totalMessagesSent: Atomiclong

- totalMessagesReceved: Atomicl.ong

- sumOfMessagesSent: AlomiclLong

- sumOfMessagesReceived. AlomicLong

+ polMessage|Message): Message
- Halper methods 1o be created as needed

Message

+ Producer{Node, Long)

- produceMessage(). Message

- sandMessage(Node, Message). Message
- logOutput(Message). void

* run(): void

- Heldper mathods o be created as needed

Consumer
<<Extends Thread>>

- 8rc: Node

+ Consumar(Noda)

- consumehMessage!). Message

- parseMessage{Message): void

- loglnput{Message): void

+ run| ) void

- Helper methods to be created as needed

+ Node(String, Long, Long, Integer, Integar)
+ getNodelly): String

+ seiNeighbors{Node{]): void

* generaleMessage(): Long

+ galectDestination(): Node

* updateSentMessages(Message): void

+ updateRecervadMessages(Message) voiud
+ getMessagaFromBuffer(): Message

+ putMassageinBuffer() boolkean

+ reportTotal(): Long

+ repontCount(). Long

+ checkDone(): boolean

+ run(). void

- Helper mathods to be created &3 needed

+ e Stnng
+ dst: S¥ing
+ massageValue: Long

+ Massage(String, String, Long)

+ denotes public, - denotes private. Format: (public/private) name(arg_types): return_type

UML
Diagram

® This UML Diagram lists all

the required Classes and
Methods for you to
implement in this program.

* We just went over these
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Synchronization in Java

* Java has inbuilt monitors * Built in thread class can be
* Allows threads to have mutual extended and used
exclusion * Instantiate and use myThread.start()
* Allows threads thf; gbility to wait * (@Override run() to change what a
(block) for a condition to become true thread does

* Signaling is done using
* wait()

* notify() or notifyAll()
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code

registers

code data

files

thread —— ;

registers

registers

registers

stack

stack

stack

Threads

public class PhilosopherThread
extends Thread

d

@Override
public void run()
// Thread entry point
single-threaded process multithreaded process }
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Creating and Starting threads

public class PhilosopherThread extends Thread {
@Override
publieiveid run () {
// Thread entry point

}

PhilosopherThread Socrates = new PhilosopherThread(table, seat):;

Socrates.start(); //begins Socrates thread invokes the run() method
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Synchronized methods

* A piece of logic marked with synchronized becomes a synchronized block,

. allowing only one thread to execute at any given time.

public synchronized void pickup(int 1) throws InterruptedException

d

/ /Synchronized code goes in here

b
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* wait()

. * Causes current thread to wait until another thread invokes the notify() or notifyAll() method
o

notity()

* notity() wakes up one thread waiting for the lock

* notifyAll()

the threads from the list of threads waiting for the lock and wakes that thread up

CS 370 - Operating Systems — Fall 2024

* The notifyAll() method wakes up all the threads waiting for the lock; the JVM selects one of
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https://www.baeldung.com/java-wait-notify

Java Dining Philosophers Example

® Please see the for

. Self Exercise 6 Java threads and Synchronization Example

In Teams > Self Exercises

CS 370 - Operating Systems - Fall 2021
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https://teams.microsoft.com/l/message/19:6a11e040d75a40caaf2175c4c2f044ec@thread.tacv2/1727400109941?tenantId=afb58802-ff7a-4bb1-ab21-367ff2ecfc8b&groupId=318b4dcd-8ad5-4135-9777-0e428b8079d1&parentMessageId=1727400109941&teamName=CompSci%20CS370%20Fall24&channelName=Self%20Exercises&createdTime=1727400109941

ool

Raspberry P1




Topics

. * Intro to Raspberty Pi
* Setting up a Raspberry Pi

* Term Project Requirements

* Term Project Expectations
* Helpful Links
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Why Raspberry Pi’s

. * Small and Portable
| s Cheap

* Well-Documented

e Versagle
* Support for many peripherals (thanks to Linux)

Third Best Selling Computer Brand in the World

CS 370 - Operating Systems — Fall 2024 20




Raspberry P1 Models

Raspberry P1 4 Model B+

1.5GHz 64-bit quad-core processor -
dual-band wireless LAN

Bluetooth 5.0/BLE

Gigabit Ethernet
Power-over-Ethernet support (with
separate PoE HAT)

e 2 x micro-HDMI ports (up to
4kp60 supported)
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Raspberry Pi Setup =

TV / Monitor

= Can connect to monitor, keyboard,

. ' USB Power mousc
n ﬂ . Adapter
( Home Router ]
MN = Usable as a normal desktop

Optionally use ss/ instead of a monitor

Keyboard

0000000000000
0000000000000

0000000000000
000000000000

Mouse
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Raspberry Pi Operating Systems
Expect most groups to use Raspbian

~1© | O [ ) EEEEE
- . Other options are available - some
@ * ! pv?)l OS’s for specific use cases

LIBREELEC PINET WEATHER STATION
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Programming l.anguages

Basically any language will work (Python, C, Java, C++,
Javascript, Ruby, Lisp, Rust, R, etc...)

Most projects done in Python or C
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GPIO lLibraries

Python/C
e RPi.GPIO (Python)

o RPi.GPIO code samples
RPIO.GPIO (Python)
wiringPi (Python/C)
pigpio (Python/C/Javasctipt)

opiozero (Python)
becm?2835 (C)
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https://pypi.org/project/RPi.GPIO/
https://elinux.org/RPi_GPIO_Code_Samples
https://pythonhosted.org/RPIO/
https://github.com/WiringPi/WiringPi-Python
http://abyz.me.uk/rpi/pigpio/python.html
https://gpiozero.readthedocs.io/en/stable/
https://www.airspayce.com/mikem/bcm2835/

Teem Broject Requirements

Project must involve:

. ® A single board computer (Raspberry Pr1)
o With WiFi capability + operating system

® Communication with at least one other computer
O Another board, desktop, assistant, etc.
® At least one sensing or interacting device

O Heat sensor, motion detector, camera, motor, controller, etc...
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Term Project Expectations

o Originality

O Several groups with similar projects (temperature sensors, plant waterers, etc...)
©  Come up with a unique selling point

B Find similar projects online, then do something different

e Thoroughness

© Think about the evaluations you’re performing - design careful experiments and
control for variables

O Try to learn something you couldn’t have guessed
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Helpful Links

Help Guides Forums and Tutorials
Setup instructions Raspberry Pi forums / projects
. SSH with Raspberry Pi’s Hackaday Projects
Help videos Adafruit [earning Guides
FAQ’s Raspberry Pi subreddit
Embedded Linux wiki
CS 370 - Operating Systems — Fall 2024 28
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https://www.raspberrypi.org/help/
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/help/videos/
https://www.raspberrypi.org/documentation/faqs/
https://elinux.org/RPi_Hub
https://www.raspberrypi.org/forums/
https://projects.raspberrypi.org/en/
https://hackaday.io/projects?tag=raspberry%20pi
https://learn.adafruit.com/category/raspberry-pi
https://www.reddit.com/r/raspberry_pi/

Thank You

Questions?
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