
CS370 - Homework 3

Pipes and Shared Memory

Program Description

• Generator receives the filename through the command line argument.

• Generator then creates a pipe and checks for successful creation.

• Pass the pipe reference to Reader for maintaining a running sum of the

inputs.

• Reader writes the sum to the pipe using the provided reference. (only the

write end is required)

2CS 370 - Operating Systems – Fall 2024

Program Description

• The control is passed back to the Generator file where it reads contents of

the pipe into a char array.

• Generator finds the sum of all digits from an integer value of the char array.

• Generator creates three shared memory segments, for Prime, Square,

Composite.

✓ Composite and Perrin will share a memory segment.

• Further, we print the name and the file descriptor of the shared memory.

3CS 370 - Operating Systems – Fall 2024

Program Description

• Fork the Prime, Square, and Composite programs, passing the name of the corresponding shared

memory segment as an argument.

• Composite will spawn a Perrin process using the same process as Initiator.

• The Prime, Square, Composite, and Perrin will write the last value calculated to their respective shared

memory segment.

• Three child processes, Prime, Square, Composite must run concurrently, and Perrin runs

sequentially from Composite.

• Generator waits for all the child processes to complete and then prints the return value from the shared

memory.

• Finally, unlink the shared memory.
4

CS 370 - Operating Systems – Fall 2024

Program Overview

1. Generator spawns (fork/exec) a Reader process passing the input filename.

2. Reader opens file handle and processes input. Returns an integer via a shared pipe.
Generator reads from the pipe and processes that input to create some number N.

3. 4. and 5. Generator creates shared memory and spawns Prime, Square, and
Composite processes, passing them N and the shared memory address for their
pairwise communication.

6. and 7. Prime and Square will pass the results of their calculation directly back to
generator which will handle them as directed.

Program Overview

8. In addition to its regular sequence computation, Composite must create a shared
memory segment and spawn a Perrin process passing it N and the address of that
segment.

9. Once Perrin has performed its computations, it will write to shared memory and
Composite will read that result.

10. Composite will write it's final value and Perrin’s final value to shared memory.

Run Processes Concurrently

• In Assignment 2, the wait condition for the child was written before the

parent process forked the next child.

• This leads to linear/sequential execution. However, for this Assignment, we

need to execute the programs concurrently and sequentially.

• Hence, for the concurrent processes the Generator must fork three child

processes and then use the wait() command for each of those.

8CS 370 - Operating Systems – Fall 2024

Function Description

• pipe()

• shm_open()

• ftruncate()

• mmap()

• shm_unlink()

• sprintf()

9CS 370 - Operating Systems – Fall 2024

pipe()

10

Syntax: int pipe(int pipefd[2]);

Arguments: pipefd[2] is the array to represent two ends of the pipe. Each

end is a file descriptor (FD).

Example: int pipefds[2];

int result_pipe = pipe(pipefds);

CS 370 - Operating Systems – Fall 2024

Syntax: int shm_open(const char *name, int oflag, mode_t mode);

Arguments: name: name of the memory segment

oflag: can take the following values: O_RDONLY, O_RDWR,

O_CREAT, O_EXCL, O_TRUNC

mode: permissions in the form 0666

Example: char shm_Name[15] = “Shared_Mem0”;

int shm_fd = shm_open(shm_Name, O_CREAT | O_RDWR,

0666);

shm_open()

11CS 370 - Operating Systems – Fall 2024

ftruncate()

12

Syntax: int ftruncate(int fd, off_t length);

Arguments: fd: is the file descriptor

length: is the desired size of the memory segment. (Will be

initialized to 0)

Example: int result = ftruncate(fd, 1234);

CS 370 - Operating Systems – Fall 2024

mmap()

13

Syntax: void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

Arguments: addr: beginning address of the memory object

length: length of the memory object in bytes

prot: protection of the pages (PROT_EXEC, PROT_READ,

PROT_WRITE, PROT_NONE)

flags: Updates to the mapping should be visible to other processes

mapping the same region. (MAP_SHARED, MAP_PRIVATE etc.)

CS 370 - Operating Systems – Fall 2024

mmap()

14

Arguments: fd: returned by shm_open

offset: is 0 in here

Example: mmap(0, size, PROT_READ, MAP_SHARED, shm_fd, 0);

CS 370 - Operating Systems – Fall 2024

shm_unlink()

15

Syntax: int shm_unlink(const char *name);

Arguments: name: is the memory object name to be unlinked

Example: int error = shm_unlink(shm_Name);

CS 370 - Operating Systems – Fall 2024

sprintf()

16

Syntax: int sprintf(char * buffer, const char * string, ...);

Arguments: string is stored in buffer

Example: sprintf(buffer, "Sum = %d", sum);

CS 370 - Operating Systems – Fall 2024

Makefile

• Makefile provided, please use it. This is the file we will use to test your

program. So, its best if you use it while completing the assignment.

14CS 370 - Operating Systems – Fall 2024

Other Requirements

• Code should compile and run on CS Department computers.

• Submit all .c, along with Makefile and README.txt. Please remember to

submit your assignment in a zipped file.

18CS 370 - Operating Systems – Fall 2024

Resources

• Read & Write with Pipe

• POSIX Shared Memory

19CS 370 - Operating Systems – Fall 2024

https://www.geeksforgeeks.org/c-program-demonstrate-fork-and-pipe/
https://linuxhint.com/posix-shared-memory-c-programming/

Demo of Concurrent Program

20

The order

of print

statements

can be

varied at the

time of your

run

CS 370 - Operating Systems – Fall 2024

Thank You

Questions?

Acknowledgements

• These slides are based on contributions of current and past CS370

instructors and TAs, including M. Maloney, Md N. Islam, J. Jernberg, J.

Applin, L. Mendis, M. Warushavithana, S. R. Chowdhury, A. Yeluri, K.

Bruhwiler, Y. K. Malaiya and S. Pallickara.

21CS 370 - Operating Systems – Fall 2024

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Program Overview
	Slide 7: Program Overview
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

