Programing with Multiple
Processes 1n C

fork, wait, execlp, WIFEXITED, WEXITSTATUS, file
operations, and make

Assignment Information

Four executables will be needed

Generator — Main program, that opens, reads the characters and closes the file, forks child
processes.

Generator.c, Fibonacci.c, Perrin.c and Composite.c.

Outline

* Learn how to use the following

Passing command line argument to Main Program
File Operation (fopen, perror, fgets, sizeof, strcspn, atoi)
Creating new child process (fork, perror)

Executing the program in the child process, passing argument as a command-line
argument (execlp)

Waiting for the child process to terminate and (wait)

Checking if the child process terminated normally (WIFEXITED)
Extracting the exit status of the child process (WEXITSTATUS)

T T

Flowchart

®
|

r—Runnln.g Main F'rogrnmw
in Generator

e A

-

[Processing Command)
Line Argument

e A

*

| Reading a line from the
- File

- l .. Passing the integer value of the line

Creating Fibonacci Child as command line argument

Process o+
Executing Fibonacci
Child Process

|
Return exit value to the

parent

&

[Creating Perrin Child]

Process J Passing the returned value of the

Fibonacci as gommand line argument

Executing Perrin Child
Process

Return exit value to the
parent

Creating Compaosite |
Child Process J

Passing the returned value of the Perrin
rs command line argument

Child Process

Return exit value to the
¥ parent
[Reading next line]

[Executing Composite

Mo

Yes

Wrrapping up the
program

fork()

Generates an exact copy of parent process except for the value it returns.
Both Processes continue to work after the fork() execution.

In a child process, fork() returns zero

In the parent process it will return the child’s process ID
If return value is -1, then fork() failed.

Any process can retrieve its process ID with getpid().
Syntax:

* pid_t pid=fork();

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {

fork();

fork();

fork();

printf("hello\n");

return O;

}

—rnrrkf) — {1
{wt (), = Iy
,{ﬂkﬂ; - 43

Pn:rml -2 1
chitd =20 a

Total child precem — 7.

Child }vl'c'!.ﬁﬂ 3

walt()

* Makes parent process wait until the child has been entirely executed .

* Use WIFEXITED() to check whether child process has terminated normally,
as opposed to dying with a signal .

* Use WEXITSTATUS() to retrieve return value of child process

* Syntax: pid_t wait(int *stat_loc);

execlp()

Executes a new program within a child process

Arguments passed - the name of the executable and filename like "./Starter", ”’Startet"
Also pass any needed command line arguments as parameters

Terminate list of arguments with NULL

Syntax

* int execlp(const char * file, const char * arg0, const char * arg1, ... const
char * argn, NULL);

« execlp(“./Fibonacci’, “Fibonacci”, arg _str, NULL),

File Operations

* We need several functions for this assighment.
S Elacyire:

* fopen()

* fclose()

s vioeisiRoroctel)

fopen()

* Used to open a file, whose name is given as the argument.
* It returns a pointer to the opened file.
* Syntax:

* PILE * fp = fopen(const char *filename, const char *mode)

tclose()

* (Closes the stream to the file.
* Buffers are flushed.

° Syntax

* 1nt fclose(FILE *stream)

foets()

Reads a line from a file

Puts the line into the provided array/string
Syntax:
int fgets(char *s, int size, FILE *stream)

Use:

char buf[256];
while (fgets(buf, sizeof(buf), in)
// deal with the string in buf

Why use make?

* Enables developers to easily compile large and complex programs with many
components.

* Situation: There are thousands of lines of code, distributed in multiple source
files, written by many developers and arranged in several sub-directories.
This project also contains several component divisions and these
components may have complex inter-dependencies.

13

Variable assignments 1n make

* By convention, predefined variable names used in a Maketile are in upper
case, and user-defined variables are lower case.

Example: CC = gcc
* We can use the value assigned later as §()

Example: $(CC)

14

Makefile Structure

Makefile contains definitions and rules.
A definition has the form:
VAR = value
A rule has the form:
Output files: input files
<tab>Commands to turn inputs to outputs
All commands must be tab-indented. Spaces don't work!

The make <target> command executes the rule with the <target>. If target not1s
specified, it defaults to the first rule defined in the Makefile.

15

Patterns and Special variables

=z
A

: Wildcard pattern-matching, for generic targets.
: Full target name of the current target.

: Returns the dependencies that are newer than the current

: Returns the text that corresponds to % in the target.
: Name of the first dependency.

: Name of the all dependencies with space as the delimiter.

16

Demo Makefiles

CC = gcc

C
CFLAGS =

-Wall -g
TARGETS = Driver Worker
all: S(TARGETS)

Driver.o

CcC CFLAGS

Driver:
Driver Driver.o
Worker.o

CcC CFLAGS 0 Worker Worker.o

Worker|:

CcC CFLAGS -0 5@

-f *.0 TARGETS

Driver
Driver input.txt

CC =gcc
- This line defines a variable called CC that assigns gcc which represents C
compiler
CFLAGS = -Wall -g

- This defines the compiler flags that will be passed to gcc during
compilation.
= -Wall: This enables all common compiler warnings
= -g: This flag includes debugging information in the compiled binaries

TARGETS = Driver Worker

- This defines a variable TARGETS, which contains the list of final executables that the
Makefile will produce: Driver, Worker.

all: $(TARGETS)

- This defines the default target (named all), which will be executed if no specific target is
given when running make.

Driver: Driver.o
$(CC) $(CFLAGS) -0 Driver Driver.o

z This rule defines how to build the Driver executable.
2 This is the command to link the Driver .o object file and produce the final Driver
executable.
- $(cc)isgcce, and $(CFLAGS) are the compiler flags (-Wall -g).

- -0 Driver specifies the output file, which will be named Driver. i

Demo Makefiles

— = 0, - 0
cC = I_IJCC %.0: %.C
CFLAGS = -Wall -g - Thisis a pattern rule that defines how to compile any . c file into a . o (object) file.
% .0 and % . c are placeholders (wildcards), where make will substitute the % with the

actual flle name(eg Dr1ver cto Dr1ver o)

TARGETS = Driver Worker

all: S(TARGETS) $«x»uCHAGS)c$<o$@
i : This is the command to compile a . c file into an object file.

i i - $(CC) is gcc, and S(CFLAGS) are the compiler flags.
Driver: Driver.o - -c tells the compiler to compile only (i.e., generate an object file, not a full
ccC CFLAGS) -o Driver Driver.o executable). _ Sl PR :
- S<represents the first prerequisite (in this case, the . c file being compiled).
S@ represents the target (in this case, the . o file being generated).

Worker|: Worker.o

cC CFLAGS C e
rm -f *.0 $(TARGETS)

This command removes all . o files and the target executables

CcC CFLAGS -0 (d run: Driver
) > - Thisrule defines a run target, which depends on the Driver executable.

- It will ensure that Driver is built before attempting to run it.

- *.0 TARGETS IDriver input.txt
This is the command to run the Driver program with input . txt as the command-

line argument.

Driver
Driver input.txt s

Demo Makefiles

When you run make:

CC = gcc

CFLAGS = -Wall - d - make starts with the all target and builds the required executables (Generator,
Fibonacci, Perrin, Composite).

TARGETS = Driver Workei - Itchecks the . c files for changes, compiles them into . o files, and then links them

into executables.

all: S(TARGETS)

To clean up the project:

Driver: Driver.o - Youcanrunmake clean, which removes all the generated object files and
CC CFLAGS o Driver Driver.o executables.

To run the Generator program:
Worker|: Worker.o

cC CFLAGS 0 Worker Worker.o - Youcanuse make run, which will build Generator if necessary, and then execute
it with the argument input . txt.

CcC CFLAGS S< -0 5@

-f *.0 TARGETS

Driver

Driver input.txt s

Thank You

Acknowledgements

* These slides are based on contributions of current and past CS370
instructors and TAs, including J. Applin,A. Yeluri, Y. K. Malaiya, Phil sharp
and S. Pallickara.

21

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

