
Programing with Multiple

Processes in C

fork, wait, execlp, WIFEXITED, WEXITSTATUS, file
operations, and make

1

Assignment Information

• Four executables will be needed

• Generator – Main program, that opens, reads the characters and closes the file, forks child
processes.

• Generator.c, Fibonacci.c, Perrin.c and Composite.c.

2

Outline

• Learn how to use the following

• Passing command line argument to Main Program

• File Operation (fopen, perror, fgets, sizeof, strcspn, atoi)

• Creating new child process (fork, perror)

• Executing the program in the child process, passing argument as a command-line

argument (execlp)

• Waiting for the child process to terminate and (wait)

• Checking if the child process terminated normally (WIFEXITED)

• Extracting the exit status of the child process (WEXITSTATUS)
3

Flowchart

4

fork()

• Generates an exact copy of parent process except for the value it returns.

• Both Processes continue to work after the fork() execution.

• In a child process, fork() returns zero

• In the parent process it will return the child’s process ID

• If return value is -1, then fork() failed.

• Any process can retrieve its process ID with getpid().

• Syntax:

• pid_t pid=fork();

5

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main() {

fork();
fork();

fork();

printf("hello\n");

return 0;

}

wait()

• Makes parent process wait until the child has been entirely executed .

• Use WIFEXITED() to check whether child process has terminated normally,

as opposed to dying with a signal .

• Use WEXITSTATUS() to retrieve return value of child process

• Syntax: pid_t wait(int *stat_loc);

7

execlp()

• Executes a new program within a child process

• Arguments passed - the name of the executable and filename like "./Starter", ”Starter"

• Also pass any needed command line arguments as parameters

• Terminate list of arguments with NULL

• Syntax

• int execlp(const char * file, const char * arg0, const char * arg1, … const
char * argn, NULL);

• execlp(“./Fibonacci”, “Fibonacci”, arg_str, NULL);

8

File Operations

• We need several functions for this assignment.

• They are:

• fopen()

• fclose()

• fgets() or fgetc()

9

fopen()

• Used to open a file, whose name is given as the argument.

• It returns a pointer to the opened file.

• Syntax:

• FILE * fp = fopen(const char *filename, const char *mode)

10

fclose()

• Closes the stream to the file.

• Buffers are flushed.

• Syntax

• int fclose(FILE *stream)

11

fgets()

• Reads a line from a file

• Puts the line into the provided array/string

• Syntax:

int fgets(char *s, int size, FILE *stream)

• Use:

char buf[256];

while (fgets(buf, sizeof(buf), in)

// deal with the string in buf

12

Why use make?

• Enables developers to easily compile large and complex programs with many

components.

• Situation: There are thousands of lines of code, distributed in multiple source

files, written by many developers and arranged in several sub-directories.

This project also contains several component divisions and these

components may have complex inter-dependencies.

13

Variable assignments in make

• By convention, predefined variable names used in a Makefile are in upper

case, and user-defined variables are lower case.

Example: CC = gcc

• We can use the value assigned later as $()

Example: $(CC)

14

Makefile Structure

• Makefile contains definitions and rules.

• A definition has the form:

VAR = value

• A rule has the form:

Output files: input files

<tab>Commands to turn inputs to outputs

• All commands must be tab-indented. Spaces don't work!

• The make <target> command executes the rule with the <target>. If target not is
specified, it defaults to the first rule defined in the Makefile.

15

Patterns and Special variables

• % : Wildcard pattern-matching, for generic targets.

• $@ : Full target name of the current target.

• $? : Returns the dependencies that are newer than the current

target.

• $* : Returns the text that corresponds to % in the target.

• $< : Name of the first dependency.

• $^ : Name of the all dependencies with space as the delimiter.

16

Demo Makefiles

17

CC = gcc

- This line defines a variable called CC that assigns gcc which represents C
compiler

CFLAGS = -Wall -g

- This defines the compiler flags that will be passed to gcc during
compilation.

- -Wall: This enables all common compiler warnings
- -g: This flag includes debugging information in the compiled binaries

TARGETS = Driver Worker

- This defines a variable TARGETS, which contains the list of final executables that the

Makefile will produce: Driver, Worker.

all: $(TARGETS)

- This defines the default target (named all), which will be executed if no specific target is

given when running make.

Driver: Driver.o

$(CC) $(CFLAGS) -o Driver Driver.o

- This rule defines how to build the Driver executable.

- This is the command to link the Driver.o object file and produce the final Driver
executable.

- $(CC) is gcc, and $(CFLAGS) are the compiler flags (-Wall -g).

- -o Driver specifies the output file, which will be named Driver.

Demo Makefiles

18

%.o: %.c

- This is a pattern rule that defines how to compile any .c file into a .o (object) file.
- %.o and %.c are placeholders (wildcards), where makewill substitute the % with the

actual file name (e.g., Driver.c to Driver.o).

- This rule applies to all the .c files without having to explicitly list each file.

$(CC) $(CFLAGS) -c $< -o $@

- This is the command to compile a .c file into an object file.

- $(CC) is gcc, and $(CFLAGS) are the compiler flags.
- -c tells the compiler to compile only (i.e., generate an object file, not a full

executable).

- $< represents the first prerequisite (in this case, the .c file being compiled).
- $@ represents the target (in this case, the .o file being generated).

clean:

rm -f *.o $(TARGETS)

- This command removes all .o files and the target executables

run: Driver

- This rule defines a run target, which depends on the Driver executable.
- It will ensure that Driver is built before attempting to run it.

./Driver input.txt
- This is the command to run the Driver program with input.txt as the command-

line argument.

Demo Makefiles

19

When you run make:

- make starts with the all target and builds the required executables (Generator,

Fibonacci, Perrin, Composite).

- It checks the .c files for changes, compiles them into .o files, and then links them

into executables.

To clean up the project:

- You can run make clean, which removes all the generated object files and

executables.

To run the Generator program:

- You can use make run, which will build Generator if necessary, and then execute

it with the argument input.txt.

Thank You

Acknowledgements

• These slides are based on contributions of current and past CS370

instructors and TAs, including J. Applin,A. Yeluri, Y. K. Malaiya, Phil sharp

and S. Pallickara.

21

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

