
HELP SESSION 1
HW1 and C Review

C S 3 7 0

C O L O R A D O S T A T E U N I V E R S I T Y

Outline

• Overview of the assignment

• C Review

• Dynamic Memory

• Makefile

• Remote Lab Machines

Overview of Assignment

• Required files:

• Driver.c

• Primes.c

• Primes.h

• Makefile

Driver.c

• Takes in one command line argument

 Perform argument check

• Set the seed with srand()

• atoi()

• Invoke functions in Primes.c

• float running_ratio = get_running_ratio();

• What should be included in Driver.c so that it can call the functions in Primes.c?

Primes.c

• int random_in_range(int lower_bound, int upper_bound)

• float get_running_ratio()

• int get_prime_count (int *array, int arraySize)

You are encouraged to define new functions as you see fit. However, the above three

functions must be included.

int random_in_range(int lower_bound, int
upper_bound)

• Returns a random number in range [a,b)

• Given to you in write up

int get_prime_count (int *array, int arraySize)

• Returns to get_running_ratio() the number of primes in each array.

float get_running_ratio();
• Controls flow of the program

1. Calculate the number of iterations for your loop. The iteration should start with 1.

2. Allocate an array with the appropriate number of elements on each iteration.

3. Populate the array with random integers.

4. Calls get_prime_count()

5. Calculate the prime/composite (non-prime) ratio

6. Keep track of the iteration with the largest count of prime numbers.

7. Keep a running sum of the ratio of (prime/non-prime)

8. Returns average ratio across all iterations

=> (running sum-from step (7)) / total iterations of step (1)

C review

• The following slides are based on material gathered from CS370- Spring2022 Help

Session 1.

• Materials and images found on the following websites:

1. https://iq.opengenus.org/pointers-in-c/

2. https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/

3. https://www.cprogramming.com/tutorial/makefiles.html

http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.cprogramming.com/tutorial/makefiles.html

C review: Pointers

• A pointer declared datatype *var_name is a reference to a section of memory

allocated for some type of object.

• * operator is the de-referencing operator.

It has dual meaning.

1) declaring a pointer int *p;

2) Accessing what the pointer is pointing to printf(“%d”, *p);

• Warning regarding dangling pointers!!!!

References
• The & operator is used to obtain the

address of an object so that it may

be assigned to a pointer.

• int *p;

• If int x = 5; and p = &x

• Then return *p equals?

Image taken from:

https://iq.opengenus.org/pointers-in-c/

https://iq.opengenus.org/pointers-in-c/

References
continued

Image taken from:

https://iq.opengenus.org/pointers-in-c/

• Use the & operator to pass

an object by address.

• Why?

• Its less costly than copying

the object.

https://iq.opengenus.org/pointers-in-c/

Arrays
• Declaring an array

o Data_type array_name [array_size];

o Data_type array_name[n] = {x0,x1,x2,x3, … xn-1} where (x0,..,xn-1) are objects of the data_type
and n is the size of the array.

NOTE: this is how you declare and innitialize an array on the stack. Your assignment requires
you to do so on the heap. More on that next!

NOTE: [n] may be omitted in favor of []. Which implies you do not have to give a size when
you declare and initialize in the same step.

• Indexing in arrays –zero based index

Array_name[0] = 5

return Array_name[0] -> returns 5

Arrays as pointers

• Int my_array[] = {1,2,3,4,5};

• Int *p = my_array;

• What does p contain? What about *p?

• Int x = *(p+i) equivalent to x = p[i]

• p= &my_array[2]

• What does p contain?

• My_array[i] is equivalent to *(my_array+i)

More operations on pointers

• *p++

Says give me the value at p, then increment p such that it points to the next

element. By how much is it incremented?

• *++p

Says increment p and give me the value that p is now pointing to.

• ++*p

Says increment the value at p

Pointers and Strings

• A string in C is an array of char types.

• It is terminated by ‘\0’ which is the null character.

• char my_string[] =“Hello World!”

• What is the size of my_string?

• Check it yourself

• printf("%lu\n", (sizeof(my_string)/sizeof(char)));

Arrays as pointers

Image taken from:

https://iq.opengenus.org/pointers-in-c/

https://iq.opengenus.org/pointers-in-c/

THE HEAP!

• Your assignment requires you to allocate on the heap.

• void* malloc(size_t size);

“allocates memory block of given size (in bytes) and returns a pointer to the beginning of

the block. ”

malloc() doesn’t initialize the allocated memory.

• void* calloc(size_t num, size_t size);

Similar to malloc but initiallises the memory to zero

https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/

http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/

Free() and Valgrind

• You need to free the memory you allocate

• How do you check for memory leaks?

Valgrind: A program for tracking memory leaks and errors.

Command: valgrind -q --leak-check=full ./a.out

To see the line where the memory leak occurred compile with –g flag gcc –o test –g test.c

See this helpful lab from CS253 taught by Jack Applin for instructions on how to use valgrind NOTE: This lab is in c++ but valgrind

works all the same.

Please don’t use c++ code or compiler. https://https://www.cs.colostate.edu/~cs253/Spring22/La

b/Valgrind

https://www.cs.colostate.edu/~cs253/Spring22/Lab/Valgrind
https://www.cs.colostate.edu/~cs253/Spring22/Lab/Valgrind

Sample array on the heap and using free()

Image taken from:

https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/

https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/

Makefile

• A Makefile is simply a way of associating short names, called targets, with a series of
commands to execute when the action is requested
• Default target: make
• Alternate target: make clean

Makefile continued

• Basic macro: CC=gcc

• Convert a macro to its value in a target: $(CC)

• Ex: $(CC) a_source_file.c gets expanded to gcc a_source_file.c

• To execute: make

• To clean: make clean

Makefile Sample

files=Program1.c Program2.c

out_exe= Program1

$(out_exe): $(files)

 $(CC) -o $(out_exe) $(files)

tar:

 tar -cvzf John_Doe.tar *.c *.h *.txt Makefile

clean:

 rm -f $(out_exe) *.o

Save with filename makefile or Makefile
Note indentation is by using a Tab

Makefile Sample with math.h library

• files=Program1.c Program2.c

• out_exe= Program1

$(out_exe): $(files)

 $(CC) -o $(out_exe) $(files) -lm

tar:

 tar -cvzf John_Doe.tar *.c *.h *.txt Makefile

clean:

 rm -f $(out_exe) *.o

You may need math.h library to use mathematical formulas. E.g., sqrt()

Compile A Program Using Makefile & Run

• To compile via Makefile

$ make

• To clean

$ make clean

• To make a tar:

$ make tar

Remote A Lab Machine by SSH

• ssh <user_id>@<lab_machine_name>.cs.colostate.edu

You can look at Infospaces

• Choosing a Remote Machine for SSH

• Remote Login From Windows via SSH

• Remote Login From Mac OSX via SSH

https://infospaces.cs.colostate.edu/watch.php?id=224
https://infospaces.cs.colostate.edu/watch.php?id=196
https://infospaces.cs.colostate.edu/watch.php?id=220

Any questions?

This Photo by Unknown Author is licensed under CC BY-NC-
ND

Acknowledgements

• These slides are based on contributions of current and past CS370 instructors and TAs,

including Jack Applin, Abhishek Yeluri, Kevin Bruhwiler, Yashwant Malaiya, Shrideep

Pallickara, Jeff Jernberg, and Md Nazmul Islam.

	Slide 1: HELP SESSION 1 HW1 and C Review
	Slide 2: Outline
	Slide 3: Overview of Assignment
	Slide 4: Driver.c
	Slide 5: Primes.c
	Slide 6: int random_in_range(int lower_bound, int upper_bound)
	Slide 7: int get_prime_count (int *array, int arraySize)
	Slide 8: float get_running_ratio();
	Slide 9: C review
	Slide 10: C review: Pointers
	Slide 11: References
	Slide 12: References continued
	Slide 13: Arrays
	Slide 14: Arrays as pointers
	Slide 15: More operations on pointers
	Slide 16: Pointers and Strings
	Slide 17: Arrays as pointers
	Slide 18: THE HEAP!
	Slide 19: Free() and Valgrind
	Slide 20: Sample array on the heap and using free()
	Slide 21: Makefile
	Slide 22: Makefile continued
	Slide 23: Makefile Sample
	Slide 24: Makefile Sample with math.h library
	Slide 25: Compile A Program Using Makefile & Run
	Slide 26: Remote A Lab Machine by SSH
	Slide 27: Any questions?
	Slide 28: Acknowledgements

