
1 1

Colorado State University
Yashwant K Malaiya

Fall 2024 L15
Deadlocks

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Methods for Handling Deadlocks

• Ensure that the system will never enter a deadlock
state:
– Deadlock prevention

• ensuring that at least one of the 4 conditions cannot hold

– Deadlock avoidance
• Dynamically examines the resource-allocation state to ensure that

there can never be a circular-wait condition

• Allow the system to enter a deadlock state
– Detect and then recover. Hope is that it happens rarely.

• Ignore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,
including UNIX.

3

Deadlock Prevention

For a deadlock to occur, each of the four necessary conditions
must hold. By ensuring that at least one of these conditions
cannot hold, we can prevent the occurrence of a deadlock.

Mutual exclusion: only one process at a time can use a
resource
Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes
No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its task
Circular wait: there exists a set {P0, P1, …, Pn} of waiting
processes that are circularly waiting.

4

Deadlock Avoidance

Manage resource allocation to
ensure the system never enters an

unsafe state.

5

Deadlock Avoidance

• each process declares the maximum number
of resources of each type that it may need

• Resource-allocation state is defined by the
number of available and allocated resources,
and the maximum demands of the processes

• The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to
ensure that there can never be a circular-wait
condition
– Ensures all allocations result in a safe state

Requires that the system has some additional a priori information

available

6

Deadlock Avoidance: Handling resource requests

• For each resource request:

– Decide whether or not process should wait
• To avoid possible future deadlock

• Predicated on:

1. Currently available resources

2. Currently allocated resources

3. Future requests and releases of each process

7

Avoidance: amount and type of information needed

• Resource allocation state
– Number of available and allocated resources
– Maximum demands of processes

• Dynamically examine resource allocation state
– Ensure circular-wait cannot exist

• Simplest model:
– Declare maximum number of resources for each type
– Use information to avoid deadlock

8

Safe Sequence

System must decide if immediate allocation leaves the
system in a safe state

System is in safe state if there exists a sequence <P1,
P2, …, Pn> of ALL the processes such that
• for each Pi, the resources that Pi can still request

can be satisfied by
– currently available resources +
– resources held by all the Pj, with j < i
– That is

• If Pi resource needs are not immediately available, then Pi
can wait until all Pj have finished and released resources

• When Pi terminates, Pi +1 can obtain its needed resources,
and so on

• If no such sequence exists: system state is unsafe

9

Deadlock avoidance: Safe states

• If the system can:
– Allocate resources to each process in some order

• Up to the maximum for the process

– Still avoid deadlock

– Then it is in a safe state

• A system is safe ONLY IF there is a safe
sequence

• A safe state is not a deadlocked state
– Deadlocked state is an unsafe state

– Not all unsafe states are deadlock

10

Safe, Unsafe, Deadlock State

Examples of safe and unsafe states in next 3 slides

11

Example A: Assume 12 Units in the system

• Is the system at time T0 in a safe state?
– Try sequence <P1, P0 , P2>
– P1 can be given 2 units

– When P1 releases its resources; there are now 5 available units

– P0 uses 5 and subsequently releases them (10 available now)

– P2 can then proceed.

• Thus <P1, P0 , P2> is a safe sequence, and at T0
system was in a safe state

Max need Current holding

av 3

P0 10 5

P1 4 2

P2 9 2

At time T0 (shown):
9 units allocated
3 (12-9) units available

A unit could be a drive,
a block of memory etc.

More detailed look

12

Example A: Assume 12 Units in the system (timing)

Max
need

Current
holding

+2 allo
to P1

P1
releases
all

..

T0 T1 T2 T3 T4 T5

av 3 1 5 0 10 3

P0 10 5 5 5 10 done 0 0

P1 4 2 4 done 0 0 0 0

P2 9 2 2 2 2 2 9 done

Thus the state at T0 is safe.

Is the state at T0 safe? Detailed look for instants T0, T1, T2, etc..

Time

13

Example B: 12 Units initially available in the system

• At time T1, P2 is allocated 1 more units. Is that a
good decision?
– Now only P1 can proceed (already has 2, and given be given 2 more)

– When P1 releases its resources; there are 4 units
– P0 needs 5 more, P2 needs 6 more. Deadlock.

• Mistake in granting P2 the additional unit.

• The state at T1 is not a safe state. Wasn’t a good decision.

Max
need

T0 T1
safe?

Av 3 2

P0 10 5 5

P1 4 2 2

P2 9 2 3 Is that OK?

Before T1:
3 units available

At T1:
2 units available

14

Avoidance Algorithms

• Single instance of a resource type

– Use a resource-allocation graph scheme

• Multiple instances of a resource type

– Use the banker’s algorithm (Dijkstra)

15

Resource-Allocation Graph Scheme

• Claim edge Pi → Rj indicated that process Pi
may request resource Rj; represented by a
dashed line. This is new.

• Claim edge converts to request edge when a
process requests a resource

• Request edge converted to an assignment edge
when the resource is allocated to the process

• When a resource is released by a process,
assignment edge reconverts to a claim edge

• Requirement: Resources must be claimed a
priori in the system

16

Resource-Allocation Graph

Suppose P2 requests R2. Can R2 be allocated to P2?
Although R2 is currently free, we cannot allocate it to P2, since
this action will create a cycle getting system in an unsafe state.
If P1 requests R2, and P2 requests R1, then a deadlock will
occur. Answer: No.

Unsafe
state

- - -> Claim edges

17

Banker’s Algorithm: examining a request

• Multiple instances of resources.

• Each process must a priori claim maximum use

• When a process requests a resource,

– it may have to wait until the resource becomes
available (resource request algorithm)

– Request should not be granted if the resulting system
state is unsafe (safety algorithm)

• When a process gets all its resources it must
return them in a finite amount of time

• Modeled after a banker in a small-town making
loans.

18

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If available [j] = k, there
are k instances of resource type Rj available

Processes vs resources:

• Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

19

Safety Algorithm: Is this a safe state?

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Initially Available resources (available resources)
Finish [i] = initially false for i = 0, 1, …, n- 1 (processes done)

2. Find a process i such that both:
(a) Finish [i] = false
(b) Needi Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe
state

n = number of processes,
m = number of resources types
Needi: additional res needed
Work: res currently free
Finishi: processes finished
Allocationi: allocated to i

20

Resource-Request Algorithm for Process Pi

Notation: Requesti = request vector for process Pi.
If Requesti [j] = k then process Pi wants k instances of resource type Rj

Algorithm: Should the allocation request be granted?

1. If Requesti Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim

2. If Requesti Available, go to step 3. Otherwise Pi must
wait, since resources are not available

3. Is allocation safe?: Pretend to allocate requested resources
to Pi by modifying the state as follows:

 Available = Available – Requesti;
 Allocationi = Allocationi + Requesti;
 Needi = Needi – Requesti;

If safe the resources are allocated to Pi

If unsafe Pi must wait, and the old resource-allocation state is
preserved.

Use safety algorithm here

21

Example 1A: Banker’s Algorithm

• 5 processes P0 through P4;

• 3 resource types: A (10 instances), B (5 instances), and C
(7 instances)

• Is it a safe state?

Process Max Allocation Need

type A B C A B C A B C

Currently
available

3 3 2

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 2 0 0 1 2 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

The Need
matrix is

redundant

22

Example 1A: Banker’s Algorithm

• Is it a safe state?

• Yes, since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria

Process Max Allocation Need

type A B C A B C A B C

available 3 3 2

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 2 0 0 1 2 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

P1 run to completion. Available becomes [3 3 2]+[2 0 0] = [5 3 2]

P3 run to completion. Available becomes [5 3 2]+[2 1 1] = [7 4 3]

P4 run to completion. Available becomes [7 4 3]+[0 0 2] = [7 4 5]

P2 run to completion. Available becomes [7 4 5]+[3 0 2] = [10 4 7]

P0 run to completion. Available becomes [10 4 7]+[0 1 0] = [10 5 7]

Hence state above is safe.

Why did we
choose P1?

How did we get to this state?

”Work”

23

Ex 1B: Assume now P1 Requests (1,0,2)

• Check that Requesti Needi and Requesti ≤ Available. (1,0,2) ≤ (3,3,2) → true.

• Check for safety after pretend allocation. P1 allocation would be (2 0 0) + (1 0 2)= 302

Process Max Pretend
Allocation

Need

type A B C A B C A B C

Available 2 3 0

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 3 0 2 0 2 0

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

Sequence < P1, P3, P4, P0, P2> satisfies safety requirement.

Hence state above is safe, thus the allocation would be safe.

24

Ex 1C,1D: Additional Requests ..

• Given State is (same as previous slide)

Process Max Allocation Need

type A B C A B C A B C

available 2 3 0

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 3 0 2 0 2 0

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

P4 request for (3,3,0): cannot be granted - resources are not available.

P0 request for (0,2,0): cannot be granted since the resulting state is unsafe.

25

Bankers Algorithm: Practical Issues

• Processes may not know in advance about
their maximum resource needs

• Number of processes is not fixed

– Varies dynamically

• Resources thought to be available can
disappear

• Few systems use this algorithm

26

Deadlock Detection

• Allow system to enter deadlock state. If that
happens, detect the deadlock and do something about it.

• Detection algorithm

– Single instance of each resource:

• wait-for graph

– Multiple instances:
• detection algorithm (based on Banker’s algorithm)

• Recovery scheme

27

Single Instance of Each Resource Type

• Maintain wait-for graph (based on resource allocation graph)

– Nodes are processes
– Pi → Pj if Pi is waiting for Pj

– Deadlock if cycles

• Periodically invoke an algorithm that searches for a
cycle in the graph. If there is a cycle, there exists a
deadlock

• An algorithm to detect a cycle in a graph requires an
order of n2 operations, where n is the number of
vertices in the graph

28

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Has cycles. Deadlock.

29

Several Instances of a Resource Type

Banker’s algorithm: Can requests by all process be
satisfied?
• Available: A vector of length m indicates the

number of available (currently free) resources of
each type

• Allocation: An n x m matrix defines the number of
resources of each type currently allocated to each
process

• Request: An n x m matrix indicates the current
request of each process. If Request [i][j] = k, then
process Pi is requesting k more instances of
resource type Rj.

30

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:
(a) Work = initially available
(b) For i = 1,2, …, n, if Allocationi 0, then

Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:
(a) Finish[i] == false
(b) Requesti Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true

 go to step 2 (find next process)
4. If Finish[i] == false, for some i, 1 i n, then the system is in

deadlock state. Moreover, if Finish[i] == false, then Pi is
deadlocked

Algorithm requires an order of O(m x n2) operations to detect whether the system is in
deadlocked state

n = number of processes,
m = number of resources types
Work: res currently free
Finishi: processes finished
Allocationi: allocated to i

31

Example of Detection Algorithm

• Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances)

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] =
true for all i. No deadlock

Process Allocation Request

type A B C A B C

available 0 0 0

P0 0 1 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

After work

ini 0 0 0

P0 0 1 0

P2 3 1 3

P3 5 2 4

P1 7 2 4

P4 7 2 6

s
e
q
u
e
n
c
e

32

Example of Detection Algorithm (cont)

• P2 requests an additional instance of type C

Process Allocation Request

type A B C A B C

available 0 0 0

P0 0 1 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 1

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

After
work

ini 0 0 0

P0 0 1 0

P2 - - -

• State of system?
– Can reclaim resources held by process P0, but insufficient resources

to fulfill other processes’ requests

– Deadlock exists, consisting of processes P1, P2, P3, and P4

Sequence

33

Detection-Algorithm Usage

• When, and how often, to invoke depends on:

– How often a deadlock is likely to occur

– How many processes will need to be rolled back
• one for each disjoint cycle

• If detection algorithm is invoked arbitrarily,
there may be many cycles in the resource
graph and so we would not be able to tell
which of the many deadlocked processes
“caused” the deadlock.

34

Recovery from Deadlock: Process Termination

Choices
• Abort all deadlocked processes

• Abort one process at a time until the deadlock cycle is
eliminated

In which order should we choose to abort?
1. Priority of the process
2. How long process has computed, and how much longer to

completion
3. Resources the process has used
4. Resources process needs to complete
5. How many processes will need to be terminated
6. Is process interactive or batch?

35

Recovery from Deadlock: Resource Preemption

• Selecting a victim – minimize cost

• Rollback – return to some safe state,
restart process for that state

• Starvation – same process may always be
picked as victim, include number of
rollbacks in cost factor

36

Deadlock recovery through rollbacks

• Checkpoint process periodically

– Contains memory image and resource state

• Deadlock detection tells us which
resources are needed

• Process owning a needed resource

– Rolled back to before it acquired needed
resource
• Work done since rolled back checkpoint discarded

– Assign resource to deadlocked process

37

Livelocks

In a livelock two processes need each other’s resource

• Both run and make no progress, but neither process
blocks

• Use CPU quantum over and over without making
progress

Ex: If fork fails because process table is full

• Wait for some time and try again

• But there could be a collection of processes each trying
to do the same thing

• Avoided by ensuring that only one process (chosen
randomly or by priority) takes action

Two people meet in a narrow
corridor, and each tries to be
polite by moving aside to let the
other pass.
But they end up swaying from
side to side without making any
progress because they both
repeatedly move the same way
at the same time.

38

Welcome to CS370 Second Half

• Topics: Memory, Storage, File System,
Virtualization

• Class rules: See Syllabus

– Class, Canvas, Teams

– participation

– Final
• Sec 001, local 801: in class.

• Sec 801 non-local: on-line.

• SDC: Sec 001, Sec 801: must be taken at SDC

– Project, deadlines, Plagiarism

http://www.cs.colostate.edu/~cs370/Spring21/syllabus.html

39

Some OS History Lessons 1: UNIX

• History in Unix-like OSs

https://en.wikipedia.org/wiki/Unix-like

40

Some OS History Lessons 2: Windows
• 1974: CP/M Intel 8080, Gary Kildall, Digital

Research
– 8-bit, min 16 kB RAM, floppy

• 1980: 86-DOS, Intel 8086, Tim Paterson,
Seattle Computer Products
– Inspired by CP/M?

• 1981: PC DOS, Bill Gates, Microsoft

– 86-DOS licensed for $25,000, hired Paterson

• 1985: Windows, Bill Gates, Microsoft
– GUI inspired by MAC? Xerox PARC Star?

Gary Kildall net worth $1.9 Million at death

Tim Paterson Net Worth: $250,000

41 41

Colorado State University
Yashwant K Malaiya

Fall 2024

CS370 Operating Systems

Main Memory

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

42 42

Colorado State University
Yashwant K Malaiya

Fall 2024

CS370 Operating Systems

Main Memory

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

43 43

Chapter 8: Main Memory

Objectives:
• Organizing memory for multiprogramming environment

• Partitioned vs separate address spaces

• Memory-management techniques
• Virtual vs physical addresses

• Chunks
• segmentation

• Paging: page tables, caching (“TLBs”)

• Examples: the Intel (old/new) and ARM architectures

44

What we want

• Memory capacities have been increasing
– But programs are getting bigger faster

– Parkinson’s Law*: Programs expand to fill the
memory available to hold

• What we would like

– Memory that is
• infinitely large, infinitely fast

• Non-volatile

• Inexpensive too

• Unfortunately, no such memory exists as of

now

*work expands so as to fill the time available for its completion. 1955

45

Background

• Program must be brought (from disk) into memory and run
as a process

• Main memory and registers are only storage CPU can
access directly

• Memory unit only sees a stream of
– addresses + read requests, or

– address + data and write requests

• n-bit address: address space of size 2n bytes.
– Ex: 32 bits: addresses 0 to (232 -1) bytes

– Addressable unit is always 1 byte.

• Access times:

– Register access in one CPU clock (or less)

– Main memory can take many cycles, causing a stall

– Cache sits between main memory and CPU registers making main memory

appear much faster

• Protection of memory required to ensure correct operation

210=1,024 ≈ K
220 = 1,048,576 ≈ M
230 ≈ G

46

Hierarchy
Main memory and registers are only
storage CPU can access directly
access

Register access in one CPU clock (or
less).

Main memory can take many cycles,
causing a stall.

Cache sits between main memory
and CPU registers making main
memory appear much faster

Removable
/Backup

Registers

Cache

Main Memory

Secondary Memory (Disk)
Ch 10

Ch 9

Ch 11,13,14,16: Disk, file system Cache: CS470

47

Memory Technology somewhat inaccurte

48

Protection: Making sure each process has separate memory spaces

• OS must be protected from accesses by user
processes

• User processes must be protected from one
another

– Determine range of legal addresses for each process

– Ensure that process can access only those

• Approaches:

– Partitioning address space (early system)

– Separate address spaces (modern practice)

49

Partitioning: Base and Limit Registers

• Base and Limit for a process
– Base: Smallest legal physical address

– Limit: Size of the range of physical
address

• A pair of base and limit registers
define the logical address space for a
process

• CPU must check every memory
access generated in user mode to be
sure it is between base and limit for
that user

• Base: Smallest legal physical address
• Limit: Size of the range of physical address
• Eg: Base = 300040 and limit = 120900
• Legal: 300040 to (300040 + 120900 -1) =

420939 Addresses: decimal, hex/binary

50

Hardware Address Protection

Legal addresses: Base address to Base address + limit -1

51

Multistep Processing of a User Program

52

Address Binding Questions

• Programs on disk, ready to be brought into memory to execute form

an input queue

– Without support, must be loaded into address 0000

• Inconvenient to have first user process physical address always at

0000

– How can it not be?

• Addresses represented in different ways at different stages of a

program’s life

– Source code addresses are symbolic

– Compiled code addresses bind to relocatable addresses

• i.e., “14 bytes from beginning of this module”

– Linker or loader will bind relocatable addresses to absolute

addresses

• i.e., 74014

– Each binding maps one address space to another

53

Binding of Instructions and Data to Memory

• Address binding of instructions and data to
memory addresses can happen at three
different stages
– Compile time: If memory location known a priori,

absolute code can be generated; must recompile
code if starting location changes

– Load time: Must generate relocatable code if
memory location is not known at compile time

– Execution time: Binding delayed until run time if
the process can be moved during its execution
from one memory segment to another
• Need hardware support for address maps (e.g., base

and limit registers)

55

Separate Address Spaces Modern

• Each process has its own private address

space.

– Logical address space is the set of all

logical addresses used by a process.

• However, the physical memory has just

one address space.

– Physical address space is the set of all

physical addresses

• Need to map one to the other.

56

Logical vs. Physical Address Space

• The concept of a logical address space that
is bound to a separate physical address
space is central to proper memory
management
– Logical address – generated by the CPU; also

referred to as virtual address

– Physical address – address seen by the
memory unit

• Logical address space is the set of all
logical addresses generated by a program

• Physical address space is the set of all
physical addresses

	Slide 1
	Slide 2: Methods for Handling Deadlocks
	Slide 3: Deadlock Prevention
	Slide 4: Deadlock Avoidance
	Slide 5: Deadlock Avoidance
	Slide 6: Deadlock Avoidance: Handling resource requests
	Slide 7: Avoidance: amount and type of information needed
	Slide 8: Safe Sequence
	Slide 9: Deadlock avoidance: Safe states
	Slide 10: Safe, Unsafe, Deadlock State
	Slide 11: Example A: Assume 12 Units in the system
	Slide 12: Example A: Assume 12 Units in the system (timing)
	Slide 13: Example B: 12 Units initially available in the system
	Slide 14: Avoidance Algorithms
	Slide 15: Resource-Allocation Graph Scheme
	Slide 16: Resource-Allocation Graph
	Slide 17: Banker’s Algorithm: examining a request
	Slide 18: Data Structures for the Banker’s Algorithm
	Slide 19: Safety Algorithm: Is this a safe state?
	Slide 20: Resource-Request Algorithm for Process Pi
	Slide 21: Example 1A: Banker’s Algorithm
	Slide 22: Example 1A: Banker’s Algorithm
	Slide 23: Ex 1B: Assume now P1 Requests (1,0,2)
	Slide 24: Ex 1C,1D: Additional Requests ..
	Slide 25: Bankers Algorithm: Practical Issues
	Slide 26: Deadlock Detection
	Slide 27: Single Instance of Each Resource Type
	Slide 28: Resource-Allocation Graph and Wait-for Graph
	Slide 29: Several Instances of a Resource Type
	Slide 30: Detection Algorithm
	Slide 31: Example of Detection Algorithm
	Slide 32: Example of Detection Algorithm (cont)
	Slide 33: Detection-Algorithm Usage
	Slide 34: Recovery from Deadlock: Process Termination
	Slide 35: Recovery from Deadlock: Resource Preemption
	Slide 36: Deadlock recovery through rollbacks
	Slide 37: Livelocks
	Slide 38: Welcome to CS370 Second Half
	Slide 39: Some OS History Lessons 1: UNIX
	Slide 40: Some OS History Lessons 2: Windows
	Slide 41
	Slide 42
	Slide 43
	Slide 44: What we want
	Slide 45: Background
	Slide 46: Hierarchy
	Slide 47: Memory Technology somewhat inaccurte
	Slide 48: Protection: Making sure each process has separate memory spaces
	Slide 49: Partitioning: Base and Limit Registers
	Slide 50: Hardware Address Protection
	Slide 51: Multistep Processing of a User Program
	Slide 52: Address Binding Questions
	Slide 53: Binding of Instructions and Data to Memory
	Slide 55: Separate Address Spaces Modern
	Slide 56: Logical vs. Physical Address Space

