
1 1

Colorado State University
Yashwant K Malaiya

Fall 2024 L13
Synchonization, Deadlocks

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Synchronization Notes

• Producer-consumer with bounded buffer
– The production and consumption rates may not match.

– Circular buffer helps.

• Readers-Writers Problem
– Allow multiple readers to read at the same time

– Semaphores for mutual exclusion (mutex) and counting

• Synchronization approaches
– Machine instructions ⟹semaphores ⟹monitor

• Monitor: Implements
• mutual exclusion: only one process may be active at a time

• Conditions with associated queues where processes wait
until notified

– Our Monitor discussion is generic. Self Exercise for a Java example.

3

Course Notes

• HW3 Due Oct 3 Th

– Must have a working program 2 days earlier.

– Autograder now working

• Project D1: Was due Sept 26. Being graded.

• Midterm: Respondus lockdown browser on laptop. A
practice quiz is available.

– Sec 001 On-campus: Tues Oct 8 in-class

– Sec 801 Online: Wed Oct 9 12:10 AM-11:50 PM

• D2 progress report: Oct 31, 2024

4

Resuming Processes within a Monitor: Priority

• If several processes queued on condition
x, and x.signal() is executed, which should
be resumed?

• FCFS frequently not adequate

• conditional-wait construct of the form
x.wait(c)

– Where c is priority number

– Process with lowest number (highest priority)
is scheduled next

5

• Allocate a single resource among competing processes using
priority numbers that specify the maximum time a process plans to
use the resource

 R.acquire(t);
 ...
 access the resource;
 ...

 R.release;

• Where R is an instance of type ResourceAllocator

• A monitor based solution next.

Single Resource allocation

6

A Monitor to Allocate Single Resource
monitor ResourceAllocator

{

 boolean busy;

 condition x;

 void acquire(int time) {

 if (busy)

 x.wait(time);

 busy = TRUE;

 }

 void release() {

 busy = FALSE;

 x.signal();

 }

 initialization code() {

 busy = FALSE;

 }

}

Sleep, Time used
to prioritize

waiting
processes

Wakes up
one of the
processes

7

Java Synchronization
• For simple synchronization, Java provides the synchronized keyword

– synchronizing methods
public synchronized void increment() { c++; }
– synchronizing blocks

synchronized(this) {
 lastName = name;
 nameCount++;
 }

• wait() and notify() allows a thread to wait for an event. A call to
notifyAll() allows all threads that are on wait() with the same lock to
be notified.

• notify() notifies one thread from a pool of identical threads, notifyAll()
when threads have different purposes

• For more sophisticated locking mechanisms, starting from Java 5, the
package java.concurrent.locks provides additional capabilities.

8

Java Synchronization

Each object automatically has a monitor (mutex) associated with it

• When a method is synchronized, the runtime must obtain the lock on the object's monitor before
execution of that method begins (and must release the lock before control returns to the calling
code)

wait() and notify() allows a thread to wait for an event.

• wait(): Causes the current thread to wait until another thread invokes the notify() method or
the notifyAll() method for this object.

• notify(): Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting
on this object, one of them is chosen to be awakened.

• A call to notifyall() allows all threads that are on wait() with the same lock to be released, they will
run in sequence according to priority.

https://www.baeldung.com/java-wait-notify

9

Java Synchronization: Dining Philosophers

public synchronized void pickup(int i)
 throws InterruptedException {
 setState(i, State.HUNGRY);
 test(i);
 while (state[i] != State.EATING) {
 this.wait();
 // Recheck condition in loop,
 // since we might have been notified
 // when we were still hungry
 }
 }

private synchronized void test(int i) {
 if (state[left(i)] != State.EATING &&
 state[right(i)] != State.EATING &&
 state[i] == State.HUNGRY)
 {
 setState(i, State.EATING);
 // Wake up all waiting threads
 this.notifyAll();
 }
 }

public synchronized void putdown(int i) {
 setState(i, State.THINKING);
 test(right(i));
 test(left(i));
 }

10

Synchronization Examples

• Solaris

• Windows

• Linux

• Pthreads

11

Solaris Synchronization

• Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing

• Uses adaptive mutexes for efficiency when protecting
data from short code segments
– Starts as a standard semaphore spin-lock
– If lock held, and by a thread running on another CPU, spins
– If lock held by non-run-state thread, block and sleep waiting for signal of lock being released

• Uses condition variables
• Uses readers-writers locks when longer sections of code

need access to data
• Uses turnstiles to order the list of threads waiting to

acquire either an adaptive mutex or reader-writer lock
– Turnstiles are per-lock-holding-thread, not per-object

• Priority-inheritance per-turnstile gives the running thread
the highest of the priorities of the threads in its turnstile

12

Windows Synchronization

• Uses interrupt masks to protect access to global
resources on uniprocessor systems

• Uses spinlocks on multiprocessor systems
– Spinlocking-thread will never be preempted

• Also provides dispatcher objects user-land
which may act mutexes, semaphores, events,
and timers
– Events

• An event acts much like a condition variable

– Timers notify one or more thread when time expired

– Dispatcher objects either signaled-state (object
available) or non-signaled state (thread will block)

13

Linux Synchronization

• Linux:
– Prior to kernel Version 2.6, disables interrupts to

implement short critical sections

– Version 2.6 and later, fully preemptive

• Linux provides:
– Semaphores

– atomic operations on integers

– Spinlocks

– reader-writer versions of both

• On single-cpu system, spinlocks replaced by
enabling and disabling kernel preemption

14

Pthreads Synchronization

• Pthreads API is OS-independent

• It provides:

– mutex locks

– condition variable thus can be used to create a monitor

• Non-portable extensions include:

– read-write locks

– Spinlocks
• A simple example

https://www.geeksforgeeks.org/use-posix-semaphores-c/

15

Alternative Approaches

• Transactional Memory

• OpenMP

• Functional Programming Languages

16

• A memory transaction is a sequence of
read-write operations to memory that are
performed atomically without the use of
locks.

 void update(){
 atomic{

 /* modify shared data*/

 }

 }

May be implemented by hardware or software.

Transactional Memory

17

• OpenMP is a set of compiler directives and
API that support parallel programming.

 void update(int value)
 {

 #pragma omp critical

 {

 count += value

 }

 }

The code contained within the #pragma omp critical
directive is treated as a critical section and performed
atomically.

OpenMP

18 18

Colorado State University
Yashwant K Malaiya

Deadlocks

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

19

Chapter 8: Deadlocks

• System Model

• Deadlock Characterization

• Methods for Handling Deadlocks

– Deadlock Prevention

– Deadlock Avoidance resource-allocation

– Deadlock Detection

– Recovery from Deadlock

20

System Model

• System consists of resources

• Resource types R1, R2, . . ., Rm

Resource may be CPU cycles, memory space, I/O devices,
critical sections

• Each resource type Ri has Wi instances.

• Each process utilizes a resource as follows:

– request

– use

– release

21

Deadlock Characterization

• Mutual exclusion: only one process at a time can use
a resource

• Hold and wait: a process holding at least one resource
is waiting to acquire additional resources held by other
processes

• No preemption: a resource can be released only
voluntarily by the process holding it, after that process
has completed its task

• Circular wait: there exists a set {P0, P1, …, Pn} of
waiting processes such that P0 is waiting for a resource
that is held by P1, P1 is waiting for a resource that is
held by P2, …, Pn–1 is waiting for a resource that is held
by Pn, and Pn is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

22

Deadlock with Mutex Locks

• Deadlocks can occur via system calls, locking, etc.

• See example

– Dining Philosophers: each get the right chopstick first

– we saw this example earlier

Let S and Q be two semaphores initialized to 1

 P0 P1

 wait(S); wait(Q);

 wait(Q); wait(S);

 signal(Q); signal(S);
 signal(S); signal(Q);

P0 executes wait(s), P1 executes wait(Q)
P0 must wait till P1 executes signal(Q)
P1 must wait till P0 executes signal(S) Deadlock!

23

Resource-Allocation Graph

• V is partitioned into two types:

– P = {P1, P2, …, Pn}, the set consisting of all the
processes in the system

– R = {R1, R2, …, Rm}, the set consisting of all
resource types in the system

• request edge – directed edge Pi → Rj

• assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

24

Resource-Allocation Graph (Cont.)

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

25

Example of a Resource Allocation Graph

Observation: If the graph contains
no cycles, then no process in the
system is deadlocked.
If the graph does contain a cycle,
then a deadlock may exist.

Does a deadlock exist here?P1 holds an instance of R2
and is requesting R1 ..

P3 will eventually be done with
R3, letting P2 use it.

Thus, P2 will be eventually done,
releasing R1. …
Answer: No.

26

Resource Allocation Graph With A Deadlock

At this point, two minimal cycles
exist in the system:

P1→ R1→ P2→ R3→ P3→ R2→ P1

P2→ R3→ P3→ R2→ P2

Processes P1, P2, and P3 are
deadlocked.

Does a deadlock exist?

27

Graph With A Cycle But No Deadlock

Is there a deadlock?

P4 will release its instance of
resource type R2 . That resource
can then be allocated to P3 ,
breaking the cycle. Thus, there is
no deadlock.

If a resource-allocation graph does
not have a cycle, then the system
is not in a deadlocked state.
 If there is a cycle, then the system
may or may not be in a
deadlocked state.

28

Basic Facts

• If graph contains no cycles  no
deadlock

• If graph contains a cycle 

– if only one instance per resource type,
then deadlock

– if several instances per resource type,
possibility of deadlock

29

Methods for Handling Deadlocks

• Ensure that the system will never enter a deadlock
state:
– Deadlock prevention

• ensuring that at least one of the 4 conditions cannot hold

– Deadlock avoidance
• Dynamically examines the resource-allocation state to ensure that

it will never enter an unsafe state, and thus there can never be a
circular-wait condition

• Allow the system to enter a deadlock state
– Detection: detect and then recover. Hope is that it happens

rarely.

• Ignore the problem and pretend that deadlocks
never occur in the system; used by most operating
systems, including UNIX. However..

30

Methods for Handling Deadlocks

• Deterministic: Ensure that the system will never
enter a deadlock state at any cost

• Probabilistic view: Hope it happens rarely.
Handle if it happens: Allow the system to enter
a deadlock state and then recover.

31

Methods for Handling Deadlocks

Approach Resource
allocation policy

Scheme Notes

Prevention Conservative,
undercommits
resources

Requesting all
resources at once

Good for processes
with a single burst of
activity

Preemption Good when
preemption cost is
small

Resource ordering Compile time
enforcement possible

Avoidance midway Find at least one
safe path
(dynamic)

Future max
requirement must be
known

Detection Liberal Invoked periodically Preemption may be
needed

32

Ostrich algorithm

Ostrich algorithm: Stick your head in the sand;
pretend there is no problem at all .

Advantages:
– Cheaper, rarely needed anyway

– Prevention, avoidance, detection and recovery
• Need to run constantly

Disadvantages:
– Resources held by processes that cannot run

– More and more processes enter deadlocked state
• When they request more resources

– Deterioration in system performance
• Requires restart

To be fair to the ostriches,
let me say that …

33

Deadlock Prevention

For a deadlock to occur, each of the four necessary conditions
must hold. By ensuring that at least one of these conditions
cannot hold, we can prevent the occurrence of a deadlock.

• Mutual exclusion: only one process at a time can use a
resource

• Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes

• No preemption: a resource can be released only voluntarily
by the process holding it, after that process has completed its
task

• Circular wait: there exists a set {P0, P1, …, Pn} of waiting
processes that are circularly waiting.

34

Deadlock Prevention: Limit Mutual Exclusion

• Limit Mutual Exclusion –

– not required for sharable resources (e.g.,
read-only files)

– (Mutual Exclusion must hold for non-
sharable resources)

For a deadlock to occur, each of the four necessary conditions
must hold. By ensuring that at least one of these conditions
cannot hold, we can prevent the occurrence of a deadlock.

Restrain the ways request can be made:

35

Deadlock Prevention: Limit Hold and Wait

• Limit Hold and Wait – must guarantee that whenever a
process requests a resource, it does not hold any other
resources
1. Require process to request and be allocated all its resources
before it begins execution
2. Allow a process to request resources when it is holding none.
Ex: Copy data from DVD, sort file, and print
– First request DVD and disk file
– Then request file and printer,
– then start

• Disadvantage: starvation possible

36

Deadlock Prevention: Limit No Preemption

• Limit No Preemption –

– If a process that is holding some resources,
requests another resource that cannot be
immediately allocated to it, then all resources
currently being held are released

– Preempted resources are added to the list of
resources for which the process is waiting

– Process will be restarted only when it can regain its
old resources, as well as the new ones that it is
requesting

37

Deadlock Prevention: Limit Circular Wait

• Limit Circular Wait – impose a total ordering
of all resource types, and require that each
process requests resources in an increasing
order of enumeration

• Assign each resource a unique number

– Disk drive: 1

– Printer: 2 …

– Request resources in increasing order

• Example soon

38

Dining philosophers problem: Necessary conditions for deadlock

• Mutual exclusion

– 2 philosophers cannot share the same chopstick

• Hold-and-wait
– A philosopher picks up one chopstick at a time

– Will not let go of the first while it waits for the second one

• No preemption
– A philosopher does not snatch chopsticks held by some other

philosopher

• Circular wait
– Could happen if each philosopher picks chopstick with the same hand

first

Relax conditions to
avoid deadlock

39

Deadlock Example: numbering

/* thread one runs in this function */

void *do_work_one(void *param)
{

 pthread_mutex_lock(&first_mutex);

 pthread_mutex_lock(&second_mutex);

 /** * Do some work */

 pthread_mutex_unlock(&second_mutex);

 pthread_mutex_unlock(&first_mutex);

 pthread_exit(0);

}

/* thread two runs in this function */

void *do_work_two(void *param)
{

 pthread_mutex_lock(&second_mutex);

 pthread_mutex_lock(&first_mutex);

 /** * Do some work */

 pthread_mutex_unlock(&first_mutex);

 pthread_mutex_unlock(&second_mutex);

 pthread_exit(0);

}

Assume that thread one is the
first to acquire the locks and
does so in the order (1) first
mutex, (2) second mutex.

Solution: Lock-order verifier
“Witness” records the
relationship that first mutex
must be acquired before second
mutex. If thread two later
acquires the locks out of order,
witness generates a warning
message on the system console.

Allows deadlock. Redesign to avoid.

40

Deadlock may happen even with Lock Ordering

void transaction(Account from, Account to, double amount)

{

 mutex lock1, lock2;

 lock1 = get_lock(from);

 lock2 = get_lock(to);

 acquire(lock1);

 acquire(lock2);

 withdraw(from, amount);

 deposit(to, amount);

 release(lock2);

 release(lock1);

}

Ex: Transactions 1 and 2 execute concurrently.

Transaction 1 transfers $25 from account A to account B, and

Transaction 2 transfers $50 from account B to account A.

Deadlock is possible, even with lock ordering.

Lock ordering:
First from lock, then to lock

41

Deadlock Avoidance

Manage resource allocation to
ensure the system never enters an

unsafe state.

42

Deadlock Avoidance

• Simplest and most useful model requires that
each process declare the maximum number
of resources of each type that it may need

• The deadlock-avoidance algorithm
dynamically examines the resource-allocation
state to ensure that there can never be a
circular-wait condition

• Resource-allocation state is defined by the
number of available and allocated resources,
and the maximum demands of the processes

Requires that the system has some additional a priori information

available

44

Deadlock Avoidance: Handling resource requests

• For each resource request:

– Decide whether or not process should wait
• To avoid possible future deadlock

• Predicated on:

1. Currently available resources

2. Currently allocated resources

3. Future requests and releases of each process

45

Avoidance: amount and type of information needed

• Resource allocation state
– Number of available and allocated resources
– Maximum demands of processes

• Dynamically examine resource allocation state
– Ensure circular-wait cannot exist

• Simplest model:
– Declare maximum number of resources for each type
– Use information to avoid deadlock

46

Safe Sequence

System must decide if immediate allocation leaves the
system in a safe state

System is in safe state if there exists a sequence <P1,
P2, …, Pn> of ALL the processes such that
• for each Pi, the resources that Pi can still request

can be satisfied by
– currently available resources +
– resources held by all the Pj, with j < i
– That is

• If Pi resource needs are not immediately available, then Pi
can wait until all Pj have finished and released resources

• When Pi terminates, Pi +1 can obtain its needed resources,
and so on

• If no such sequence exists: system state is unsafe

47

Deadlock avoidance: Safe states

• If the system can:
– Allocate resources to each process in some order

• Up to the maximum for the process

– Still avoid deadlock

– Then it is in a safe state

• A system is safe ONLY IF there is a safe
sequence

• A safe state is not a deadlocked state
– Deadlocked state is an unsafe state

– Not all unsafe states are deadlock

48

Safe, Unsafe, Deadlock State

Examples of safe and unsafe states in next 3 slides

49

Example A: Assume 12 Units in the system

• Is the system at time T0 in a safe state?
– Try sequence <P1, P0 , P2>
– P1 can be given 2 units

– When P1 releases its resources; there are now 5 available units

– P0 uses 5 and subsequently releases them (10 available now)

– P2 can then proceed.

• Thus <P1, P0 , P2> is a safe sequence, and at T0
system was in a safe state

Max need Current holding

av 3

P0 10 5

P1 4 2

P2 9 2

At time T0 (shown):
9 units allocated
3 (12-9) units available

A unit could be a drive,
a block of memory etc.

More detailed look

50

Example A: Assume 12 Units in the system (timing)

Max
need

Current
holding

+2 allo
to P1

P1
releases
all

..

T0 T1 T2 T3 T4 T5

av 3 1 5 0 10 3

P0 10 5 5 5 10 done 0 0

P1 4 2 4 done 0 0 0 0

P2 9 2 2 2 2 2 9 done

Thus the state at T0 is safe.

Is the state at T0 safe? Detailed look for instants T0, T1, T2, etc..

Time

51

Example B: 12 Units initially available in the system

• At time T1, P2 is allocated 1 more units. Is that a
good decision?
– Now only P1 can proceed (already has 2, and given be given 2 more)

– When P1 releases its resources; there are 4 units
– P0 needs 5 more, P2 needs 6 more. Deadlock.

• Mistake in granting P2 the additional unit.

• The state at T1 is not a safe state. Wasn’t a good decision.

Max
need

T0 T1
safe?

Av 3 2

P0 10 5 5

P1 4 2 2

P2 9 2 3 Is that OK?

Before T1:
3 units available

At T1:
2 units available

52

Avoidance Algorithms

• Dynamic

• Single instance of a resource type

– Use a resource-allocation graph scheme

• Multiple instances of a resource type

– Use the banker’s algorithm (Dijkstra)

53

Resource-Allocation Graph Scheme

• Claim edge Pi → Rj indicated that process Pi
may request resource Rj; represented by a
dashed line. This is new.

• Claim edge converts to request edge when a
process requests a resource

• Request edge converted to an assignment edge
when the resource is allocated to the process

• When a resource is released by a process,
assignment edge reconverts to a claim edge

• Requirement: Resources must be claimed a
priori in the system

54

Resource-Allocation Graph

Suppose P2 requests R2. Can R2 be allocated to P2?
Although R2 is currently free, we cannot allocate it to P2, since
this action will create a cycle getting system in an unsafe state.
If P1 requests R2, and P2 requests R1, then a deadlock will
occur.

Unsafe
state

- - -> Claim edges

55

Resource-Allocation Graph Algorithm

• Suppose that process Pi requests a resource Rj

• The request can be granted only if converting
the request edge to an assignment edge does
not result in the formation of a cycle in the
resource allocation graph

56

Banker’s Algorithm: examining a request

• Multiple instances of resources.

• Each process must a priori claim maximum use

• When a process requests a resource,

– it may have to wait until the resource becomes
available (resource request algorithm)

– Request should not be granted if the resulting system
state is unsafe (safety algorithm)

• When a process gets all its resources it must
return them in a finite amount of time

• Modeled after a banker in a small-town making
loans.

57

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If available [j] = k, there
are k instances of resource type Rj available

Processes vs resources:

• Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

58

Safety Algorithm: Is this a safe state?

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Initially Available resources
Finish [i] = initially false for i = 0, 1, …, n- 1 (processes done)

2. Find a process i such that both:
(a) Finish [i] = false
(b) Needi  Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe
state

n = number of processes,
m = number of resources types
Needi: additional res needed
Work: res currently free
Finishi: processes finished
Allocationi: allocated to i

59

Resource-Request Algorithm for Process Pi

Notation: Requesti = request vector for process Pi.
If Requesti [j] = k then process Pi wants k instances of resource type Rj

Algorithm: Should the allocation request be granted?

1. If Requesti  Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim

2. If Requesti  Available, go to step 3. Otherwise Pi must
wait, since resources are not available

3. Is allocation safe?: Pretend to allocate requested resources
to Pi by modifying the state as follows:

 Available = Available – Requesti;
 Allocationi = Allocationi + Requesti;
 Needi = Needi – Requesti;

If safe  the resources are allocated to Pi

If unsafe  Pi must wait, and the old resource-allocation state is
preserved.

Use safety algorithm here

60

Example 1A: Banker’s Algorithm

• 5 processes P0 through P4;

• 3 resource types: A (10 instances), B (5 instances), and C
(7 instances)

• Is it a safe state?

Process Max Allocation Need

type A B C A B C A B C

Currently
available

3 3 2

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 2 0 0 1 2 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

The Need
matrix is

redundant

	Slide 1
	Slide 2: Synchronization Notes
	Slide 3: Course Notes
	Slide 4: Resuming Processes within a Monitor: Priority
	Slide 5
	Slide 6: A Monitor to Allocate Single Resource
	Slide 7: Java Synchronization
	Slide 8: Java Synchronization
	Slide 9: Java Synchronization: Dining Philosophers
	Slide 10: Synchronization Examples
	Slide 11: Solaris Synchronization
	Slide 12: Windows Synchronization
	Slide 13: Linux Synchronization
	Slide 14: Pthreads Synchronization
	Slide 15: Alternative Approaches
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Chapter 8: Deadlocks
	Slide 20: System Model
	Slide 21: Deadlock Characterization
	Slide 22: Deadlock with Mutex Locks
	Slide 23: Resource-Allocation Graph
	Slide 24: Resource-Allocation Graph (Cont.)
	Slide 25: Example of a Resource Allocation Graph
	Slide 26: Resource Allocation Graph With A Deadlock
	Slide 27: Graph With A Cycle But No Deadlock
	Slide 28: Basic Facts
	Slide 29: Methods for Handling Deadlocks
	Slide 30: Methods for Handling Deadlocks
	Slide 31: Methods for Handling Deadlocks
	Slide 32: Ostrich algorithm
	Slide 33: Deadlock Prevention
	Slide 34: Deadlock Prevention: Limit Mutual Exclusion
	Slide 35: Deadlock Prevention: Limit Hold and Wait
	Slide 36: Deadlock Prevention: Limit No Preemption
	Slide 37: Deadlock Prevention: Limit Circular Wait
	Slide 38: Dining philosophers problem: Necessary conditions for deadlock
	Slide 39: Deadlock Example: numbering
	Slide 40: Deadlock may happen even with Lock Ordering
	Slide 41: Deadlock Avoidance
	Slide 42: Deadlock Avoidance
	Slide 44: Deadlock Avoidance: Handling resource requests
	Slide 45: Avoidance: amount and type of information needed
	Slide 46: Safe Sequence
	Slide 47: Deadlock avoidance: Safe states
	Slide 48: Safe, Unsafe, Deadlock State
	Slide 49: Example A: Assume 12 Units in the system
	Slide 50: Example A: Assume 12 Units in the system (timing)
	Slide 51: Example B: 12 Units initially available in the system
	Slide 52: Avoidance Algorithms
	Slide 53: Resource-Allocation Graph Scheme
	Slide 54: Resource-Allocation Graph
	Slide 55: Resource-Allocation Graph Algorithm
	Slide 56: Banker’s Algorithm: examining a request
	Slide 57: Data Structures for the Banker’s Algorithm
	Slide 58: Safety Algorithm: Is this a safe state?
	Slide 59: Resource-Request Algorithm for Process Pi
	Slide 60: Example 1A: Banker’s Algorithm

