
1 1

Colorado State University
Yashwant K Malaiya

Fall 2024 L12
Synchronization (Chap 6, 7)

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Project

Options

• A. Research

• B. Development

Deliverable D1 Team composition and idea proposal
specified separately in the document Fall 2024 Term Project .
Similarly, D2, D3, D4 and D5 are specified.

You have to do some research for both of them.

https://www.cs.colostate.edu/~cs370/Fall22/assignments/TermPaperF22.pdf

3 September 26, 2024

Fault Tolerant Computing
©Y.K. Malaiya

3

Research: Search Databases

Specific sources: database indexes

• Google Scholar
– Forward links: Paper X Cited by

– Backward Links: Paper X cites

• Researcher sites
– Personal/Group Website

– DBLP

– Google Scholar: researcher

• CSU Library etc.

General (accessible through CSU Library)

• ACM Digital Library

• IEEEXplore Digital Library

• ScienceDirect etc

https://scholar.google.com/scholar?cites=10798677200747824320&as_sdt=4005&sciodt=0,6&hl=en
https://ieeexplore.ieee.org/abstract/document/630850/citations
https://scholar.google.com/citations?view_op=search_authors&hl=en&mauthors=Omar+Alhazmi&btnG=

4 September 26, 2024

Fault Tolerant Computing
©Y.K. Malaiya

4

Research: Source types

• Journals: published several times a year

– Rigorously reviewed, long publication delay

– Journal, Transactions, …

• Conferences: held once a year, proceedings published
– Conference, Symposium, …

• Research groups

– Industry, academic, consultants: web site

• News, Industry publications

– Magazines, blogs, white papers, product website

• Books: often well-known stuff

5 September 26, 2024

Fault Tolerant Computing
©Y.K. Malaiya

5

Research: How to Read a Paper: THE THREE-PASS

APPROACH

• The first pass: Read
– the title, abstract, and introduction

– section and sub-section headings, but ignore everything else

– the conclusions

• The second pass: Read
– figures, diagrams and other illustrations

– mark relevant unread references for further reading

– Do you need to read it in detail?

• The third pass: Read critically
– identify and challenge assumption and views

– Loop up references needed
Keshav, S., How to Read a Paper, ACM SIGCOMM,
http://ccr.sigcomm.org/online/files/p83-keshavA.pdf

6 September 26, 2024

Fault Tolerant Computing
©Y.K. Malaiya

6

Research: Avoid Prior Bias

7

Evaluating research

• These are the attributes generally evaluated

• Novelty/interest/Applicability

• Technical: Extent of research/contribution

– Key sources? Recent developments?

– citations

• Presentation

– Visuals: Non-text: diagrams, charts, algorithms

– Systematic/quantitative: tables, numbers

– Readability, coherence

• Overall

8

Course Notes
• The Midterm and the Final will use the Respondus

Lockdown Browser with camera recording.
– You must use a laptop with the Respondus Lockdown

Browser installed and tested. A test quiz will be provided.

• The Sec 001 students will bring the fully charged and
tested laptop to the designated room.
– The 1 hour 15 min Midterm will be on Tues Oct 8 during the

regular class time.

• The Sec 801 students will take their Midterm on Oct 9
any time from 12:10 AM (early morning) to 11:50 PM.

• Anyone with a significant conflict should contact me
directly.

9

Process Synchronization: Outline

Critical-section problem to ensure the consistency of

shared data

Software and hardware solutions of the critical-section

problem

Peterson’s solution

Atomic instructions

Mutex locks and semaphores

Classical process-synchronization problems

Bounded buffer,

Readers Writers,

Dining Philosophers

Another approach: Monitors

10

Semaphores: Implementation with no Busy waiting

wait(semaphore *S) {

 S->value--;

 if (S->value < 0) {

 add this process to S->list;

 block();

 }

}

signal(semaphore *S) {

 S->value++;

 if (S->value <= 0) {

 remove a process P from S->list;

 wakeup(P);

 }

}

typedef struct{

 int value;

 struct process *list;

 } semaphore;

If value < 0
abs(value) is the number

of waiting processes

11

Bounded-Buffer Problem

• n buffers, each can hold one item

• Binary semaphore (mutex)

– Provides mutual exclusion for accesses to buffer
pool

– Initialized to 1

• Counting semaphores

– empty: Number of empty slots available
• Initialized to n

– full: Number of filled slots available n
• Initialized to 0

3 semaphores needed,
1 binary, 2 counting

12

Bounded-Buffer : Note

• Producer and consumer must be ready before they
attempt to enter critical section

• Producer readiness?
– When a slot is available to add produced item

• wait(empty)

– empty is initialized to n

• Consumer readiness?
– When a producer has added new item to the buffer

• wait(full)

– full initialized to 0

empty: Number of empty slots available
 wait(empty) wait until at least 1 empty

full: Number of filled slots available
wait(full) wait until at least 1 full

13

Bounded Buffer Problem (Cont.)

The structure of the producer process

 do {

 ...

 /* produce an item in next_produced */

 ...

 wait(empty); wait till slot available

 wait(mutex); Allow producer OR consumer to (re)enter critical section

 ...

 /* add next produced to the buffer */

 ...

 signal(mutex); Allow producer OR consumer to (re)enter critical section

 signal(full); signal consumer that a slot is available

 } while (true);

empty: initialized to n
full: initialized to 0

14

Bounded Buffer Problem (Cont.)

The structure of the consumer process

 Do {

 wait(full); wait till slot available for consumption

 wait(mutex); Only producer OR consumer can be in critical section

 ...

 /* remove an item from buffer to next_consumed */

 ...

 signal(mutex); Allow producer OR consumer to (re)enter critical section

 signal(empty); signal producer that a slot is available to add

 ...

 /* consume the item in next consumed */

 ...

 } while (true);

empty: initialized to n
full: initialized to 0

15

Classical Problems of Synchronization

Classical problems
– Bounded-Buffer Problem

– Readers and Writers Problem

– Dining-Philosophers Problem

• Bounded buffer Review
– n buffers, each can hold one item

– A binary semaphore: mutex
• Provides mutual exclusion for accesses to buffer pool

• Initialized to 1

– Two counting semaphores
• empty: Number of empty slots available, Initialized to n

• full: Number of filled slots available n, Initialized to 0

16

Readers-Writers Problem

• A data set is shared among a number of
concurrent processes
– Readers – only read the data set; they do not perform

any updates

– Writers – can both read and write

• Problem
– allow multiple readers to read at the same time

– Only one single writer can access the shared data at the
same time. No readers permitted when writer is
accessing the data.

• Several variations of how readers and writers are
considered – all involve some form of priorities

17

Readers-Writers Problem

• Shared Data

– Data set

– Semaphore rw_mutex initialized to 1 (mutual exclusion

for writer)

– Semaphore mutex initialized to 1 (mutual exclusion for

read_count)

– Integer read_count initialized to 0 (how many readers?)

18

Readers-Writers Problem (Cont.)

• The structure of a writer process

 do {

 wait(rw_mutex);

 ...

 /* writing is performed */

 ...

 signal(rw_mutex);

 } while (true);

19

Readers-Writers Problem (Cont.)

• The structure of a reader process
 do {

 wait(mutex);

 read_count++;

 if (read_count == 1)

 wait(rw_mutex);

 signal(mutex);

 ...

 /* reading is performed */

 ...

 wait(mutex);

 read count--;

 if (read_count == 0)

 signal(rw_mutex);

 signal(mutex);

 } while (true);

mutex for mutual
exclusion to read_count

When:
 writer in critical section
 and if n readers waiting
1 is queued on rw_mutex
(n-1) queued on mutex

Cannot read
if writer is

writing

First reader needs to wait for the writer to finish.
If other readers are already reading, a new reader
Process just goes in.

When the last reader leaves, a writer can go in.

20

Readers-Writers Problem Variations

• First variation – no reader kept waiting
unless writer has already obtained
permission to use shared object

• Second variation – once writer is ready, it
performs the write ASAP, i.e. if a writer is
waiting, no new readers may start.

• Both may have starvation leading to even
more variations

• Problem is solved on some systems by
kernel providing reader-writer locks

21

Dining-Philosophers Problem

• Philosophers spend their lives alternating thinking and eating

• Don’t interact with their neighbors, occasionally try to pick up 2
chopsticks (one at a time) to eat from bowl

– Need both to eat,

– then release both when done

• Each chopstick is a semaphore

– Grab by executing wait ()

– Release by executing signal ()

• Shared data

• Bowl of rice (data set)

• Semaphore chopstick [5] initialized to 1

22

Dining-Philosophers Problem

Plato, Confucius, Socrates, Voltaire and Descartes

23

Dining-Philosophers Problem Algorithm: Simple solution?

• The structure of Philosopher i:
do {

 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 // think

} while (TRUE);

• What is the problem with this algorithm?
– If all of them pick up the the left chopstick first -

Deadlock

24

Dining-Philosophers Problem Algorithm (Cont.)

• Deadlock handling

– Allow at most 4 philosophers to be sitting
simultaneously at the table (with the same 5 forks).

– Allow a philosopher to pick up the forks only if
both are available (picking must be done in a critical
section.

– Use an asymmetric solution -- an odd-numbered
philosopher picks up first the left chopstick and
then the right chopstick. Even-numbered
philosopher picks up first the right chopstick and
then the left chopstick.

25

Problems with Semaphores

• Incorrect use of semaphore operations:

– Omitting of wait (mutex)

• Violation of mutual exclusion

– or signal (mutex)
• Deadlock!

• Solution:

– Monitors: a higher-level implementation of
synchronization

26

Monitors

27

Monitors

Monitor: A high-level abstraction that provides a
convenient and effective mechanism for process
synchronization
• Abstract data type, internal variables only accessible by

code within the procedure
• Only one process may be active within the monitor at a

time
– Automatically provide mutual exclusion
– Implement waiting for conditions

• Queues:
 - for entry
 - for each condition

• Originally proposed for Concurrent Pascal 1975
• Directly supported by Java (see self exercise) but not C

28

Monitors

• Only one process may be actively under execution in the
monitor.

• A generic monitor construct is used here. Implementation
varies by language.

monitor monitor-name

{

 // shared variable declarations

 procedure P1 (…) { …. }

 procedure Pn (…) {……}

 Initialization code (…) { … }

 }

}

29

Preliminary Schematic view of a Monitor

Only one process/thread in
the Monitor

• Provides an easy way to
achieve mutual exclusion

But … we also need a way for
processes to block
when they cannot proceed.

• Refinement next …

Shows 4 processes waiting in the queue.

30

Condition Variables

Some actions need some conditions to go ahead.

The condition construct

• condition x, y;

• Two operations are allowed on a condition
variable:

– x.wait() – a process that invokes the operation
is suspended until x.signal()

– x.signal() – resumes one of processes (if any)
that invoked x.wait()
• If no x.wait() on the condition variable, then it has no

effect on the variable. Signal is lost.

Compare with semaphore.
Here no integer value is

associated.

31

Difference between the signal() in semaphores and monitors

• Condition variables in Monitors: Not persistent

– If a signal is performed and no waiting threads?

• Signal is simply ignored

– During subsequent wait operations

• Thread (or process) blocks

• Compare with semaphores

– Signal increments semaphore value even if there
are no waiting threads

• Future wait operations would immediately
succeed!

32

Monitor with Condition Variables

33

Condition Variables Choices

• If process P invokes x.signal(), and process Q is
suspended in x.wait(), what should happen next?
– Both Q and P cannot execute in parallel. If Q is resumed,

then P must wait

• Options include
– Signal and wait – P waits until Q either leaves the monitor or

it waits for another condition
– Signal and continue – Q waits until P either leaves the

monitor or it waits for another condition
– Both have pros and cons – language implementer can decide
– Monitors implemented in Concurrent Pascal (‘75)

compromise
• P executing signal immediately leaves the monitor, Q is resumed
• Implemented in other languages including C#, Java

34

Monitor Solution to Dining Philosophers: Deadlock-free

enum {THINKING,HUNGRY,EATING} state[5];

• state[i] = EATING only if
– state[(i+4)%5] != EATING && state[(i+1)%5] != EATING

• condition self[5]

– Delay self when HUNGRY but unable to get chopsticks

Sequence of actions

• Before eating, must invoke pickup()
– May result in suspension of philosopher process
– After completion of operation, philosopher may eat

think

DiningPhilosophers.pickup(i);

eat

DiningPhilosophers.putdown(i);

think

35

Monitor Solution to Dining Philosophers: Deadlock-free

enum {THINKING,HUNGRY,EATING} state[5];

Process i
Process
(i+1)%5

Process
(i+4)%5

test(i) test((i+1)%5)test((i+4)%5)

state(i) state((i+1)%5)state((i+4)%5)

Can I eat? If not, I’ll wait

36

The pickup() and putdown() operations

monitor DiningPhilosophers

{

 enum { THINKING, HUNGRY, EATING} state [5] ;

 condition self [5];

 void pickup (int i) {

 state[i] = HUNGRY;

 test(i); //below

 if (state[i] != EATING) self[i].wait;

 }

 void putdown (int i) {

 state[i] = THINKING;

 // test left and right neighbors

 test((i + 4) % 5);

 test((i + 1) % 5);

 } void test (int i) {

 if ((state[(i + 4) % 5] != EATING) &&

 (state[i] == HUNGRY) &&

 (state[(i + 1) % 5] != EATING)) {

 state[i] = EATING ;

 self[i].signal () ;

 }

 }

 initialization_code() {

 for (int i = 0; i < 5; i++)

 state[i] = THINKING;

 }

}

Suspend self if
unable to acquire

chopstick

Check to see if person
on left or right can use

the chopstick

Eat only if HUNGRY
and Person on Left

AND Right
are not eating

Signal a process that
was suspended while

trying to eat

37

• Philosopher i can starve if eating periods of
 philosophers on left and right overlap
• Possible solution

– Introduce new state: STARVING
– Chopsticks can be picked up if no neighbor is

starving
• Effectively wait for neighbor’s neighbor to stop eating
• REDUCES concurrency!

Possibility of starvation

38

Monitor Implementation of Mutual Exclusion

For each monitor
• Semaphore mutex initialized to 1
• Process must execute

– wait(mutex) : Before entering the monitor
– signal(mutex): Before leaving the monitor

39

Resuming Processes within a Monitor

• If several processes queued on condition
x, and x.signal() is executed, which should
be resumed?

• FCFS frequently not adequate

• conditional-wait construct of the form
x.wait(c)

– Where c is priority number

– Process with lowest number (highest priority)
is scheduled next

40

• Allocate a single resource among competing processes using
priority numbers that specify the maximum time a process plans to
use the resource

 R.acquire(t);
 ...
 access the resource;
 ...

 R.release;

• Where R is an instance of type ResourceAllocator

• A monitor based solution next.

Single Resource allocation

41

A Monitor to Allocate Single Resource
monitor ResourceAllocator

{

 boolean busy;

 condition x;

 void acquire(int time) {

 if (busy)

 x.wait(time);

 busy = TRUE;

 }

 void release() {

 busy = FALSE;

 x.signal();

 }

 initialization code() {

 busy = FALSE;

 }

}

Sleep, Time used
to prioritize

waiting
processes

Wakes up
one of the
processes

42

Java Synchronization
• For simple synchronization, Java provides the synchronized keyword

– synchronizing methods
public synchronized void increment() { c++; }
– synchronizing blocks

synchronized(this) {
 lastName = name;
 nameCount++;
 }

• wait() and notify() allows a thread to wait for an event. A call to
notifyAll() allows all threads that are on wait() with the same lock to
be notified.

• notify() notifies one thread from a pool of identical threads, notifyAll()
when threads have different purposes

• For more sophisticated locking mechanisms, starting from Java 5, the
package java.concurrent.locks provides additional capabilities.

43

Java Synchronization

Each object automatically has a monitor (mutex) associated with it

• When a method is synchronized, the runtime must obtain the lock on the object's monitor before
execution of that method begins (and must release the lock before control returns to the calling
code)

wait() and notify() allows a thread to wait for an event.

• wait(): Causes the current thread to wait until another thread invokes the notify() method or
the notifyAll() method for this object.

• notify(): Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting
on this object, one of them is chosen to be awakened.

• A call to notifyall() allows all threads that are on wait() with the same lock to be released, they will
run in sequence according to priority.

https://www.baeldung.com/java-wait-notify

44

Java Synchronization: Dining Philosophers

public synchronized void pickup(int i)
 throws InterruptedException {
 setState(i, State.HUNGRY);
 test(i);
 while (state[i] != State.EATING) {
 this.wait();
 // Recheck condition in loop,
 // since we might have been notified
 // when we were still hungry
 }
 }

private synchronized void test(int i) {
 if (state[left(i)] != State.EATING &&
 state[right(i)] != State.EATING &&
 state[i] == State.HUNGRY)
 {
 setState(i, State.EATING);
 // Wake up all waiting threads
 this.notifyAll();
 }
 }

public synchronized void putdown(int i) {
 setState(i, State.THINKING);
 test(right(i));
 test(left(i));
 }

45

Synchronization Examples

• Solaris

• Windows

• Linux

• Pthreads

46

Solaris Synchronization

• Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing

• Uses adaptive mutexes for efficiency when protecting
data from short code segments
– Starts as a standard semaphore spin-lock
– If lock held, and by a thread running on another CPU, spins
– If lock held by non-run-state thread, block and sleep waiting for signal of lock being released

• Uses condition variables
• Uses readers-writers locks when longer sections of code

need access to data
• Uses turnstiles to order the list of threads waiting to

acquire either an adaptive mutex or reader-writer lock
– Turnstiles are per-lock-holding-thread, not per-object

• Priority-inheritance per-turnstile gives the running thread
the highest of the priorities of the threads in its turnstile

47

Windows Synchronization

• Uses interrupt masks to protect access to global
resources on uniprocessor systems

• Uses spinlocks on multiprocessor systems
– Spinlocking-thread will never be preempted

• Also provides dispatcher objects user-land
which may act mutexes, semaphores, events,
and timers
– Events

• An event acts much like a condition variable

– Timers notify one or more thread when time expired

– Dispatcher objects either signaled-state (object
available) or non-signaled state (thread will block)

48

Linux Synchronization

• Linux:
– Prior to kernel Version 2.6, disables interrupts to

implement short critical sections

– Version 2.6 and later, fully preemptive

• Linux provides:
– Semaphores

– atomic operations on integers

– spinlocks

– reader-writer versions of both

• On single-cpu system, spinlocks replaced by
enabling and disabling kernel preemption

49

Pthreads Synchronization

• Pthreads API is OS-independent

• It provides:

– mutex locks

– condition variable

• Non-portable extensions include:

– read-write locks

– spinlocks

50

Alternative Approaches

• Transactional Memory

• OpenMP

• Functional Programming Languages

51

• A memory transaction is a sequence of
read-write operations to memory that are
performed atomically without the use of
locks.

 void update(){
 atomic{

 /* modify shared data*/

 }

 }

May be implemented by hardware or software.

Transactional Memory

52

• OpenMP is a set of compiler directives and
API that support parallel programming.

 void update(int value)
 {

 #pragma omp critical

 {

 count += value

 }

 }

The code contained within the #pragma omp critical
directive is treated as a critical section and performed
atomically.

OpenMP

53 53

Colorado State University
Yashwant K Malaiya

Spring 2020

CS370 Operating Systems

Deadlock

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

54

Chapter 8: Deadlocks

• System Model

• Deadlock Characterization

• Methods for Handling Deadlocks

– Deadlock Prevention

– Deadlock Avoidance resource-allocation

– Deadlock Detection

– Recovery from Deadlock

55

Deadlock

• Can you give a real life example of a deadlock?

56

A Kansas Law

• Early 20th century Kansas Law

– “When two trains approach each other at a
crossing, both shall come to a full stop and neither
shall start up again until the other has gone”

• Story of the two silly goats: Aesop 6th cent BCE?

https://www.youtube.com/watch?v=7D59nSKzwsE

57

A contemporary example

	Slide 1
	Slide 2: Project
	Slide 3: Research: Search Databases
	Slide 4: Research: Source types
	Slide 5: Research: How to Read a Paper: THE THREE-PASS APPROACH
	Slide 6: Research: Avoid Prior Bias
	Slide 7: Evaluating research
	Slide 8: Course Notes
	Slide 9: Process Synchronization: Outline
	Slide 10: Semaphores: Implementation with no Busy waiting
	Slide 11: Bounded-Buffer Problem
	Slide 12: Bounded-Buffer : Note
	Slide 13: Bounded Buffer Problem (Cont.)
	Slide 14: Bounded Buffer Problem (Cont.)
	Slide 15: Classical Problems of Synchronization
	Slide 16: Readers-Writers Problem
	Slide 17: Readers-Writers Problem
	Slide 18: Readers-Writers Problem (Cont.)
	Slide 19: Readers-Writers Problem (Cont.)
	Slide 20: Readers-Writers Problem Variations
	Slide 21: Dining-Philosophers Problem
	Slide 22: Dining-Philosophers Problem
	Slide 23: Dining-Philosophers Problem Algorithm: Simple solution?
	Slide 24: Dining-Philosophers Problem Algorithm (Cont.)
	Slide 25: Problems with Semaphores
	Slide 26: Monitors
	Slide 27: Monitors
	Slide 28: Monitors
	Slide 29: Preliminary Schematic view of a Monitor
	Slide 30: Condition Variables
	Slide 31: Difference between the signal() in semaphores and monitors
	Slide 32: Monitor with Condition Variables
	Slide 33: Condition Variables Choices
	Slide 34: Monitor Solution to Dining Philosophers: Deadlock-free
	Slide 35: Monitor Solution to Dining Philosophers: Deadlock-free
	Slide 36: The pickup() and putdown() operations
	Slide 37
	Slide 38: Monitor Implementation of Mutual Exclusion
	Slide 39: Resuming Processes within a Monitor
	Slide 40
	Slide 41: A Monitor to Allocate Single Resource
	Slide 42: Java Synchronization
	Slide 43: Java Synchronization
	Slide 44: Java Synchronization: Dining Philosophers
	Slide 45: Synchronization Examples
	Slide 46: Solaris Synchronization
	Slide 47: Windows Synchronization
	Slide 48: Linux Synchronization
	Slide 49: Pthreads Synchronization
	Slide 50: Alternative Approaches
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Chapter 8: Deadlocks
	Slide 55: Deadlock
	Slide 56: A Kansas Law
	Slide 57: A contemporary example

