
1 1

Colorado State University
Yashwant K Malaiya

Fall 2024 L12
Synchronization (Chap 6, 7)

CS370 Operating Systems

Slides based on 
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• Various sources
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Project

Options

• A. Research

• B. Development

Deliverable D1 Team composition and idea proposal 
specified separately in the document Fall 2024 Term Project . 
Similarly, D2, D3, D4 and D5 are specified.

You have to do some research for both of them.

https://www.cs.colostate.edu/~cs370/Fall22/assignments/TermPaperF22.pdf


3 September 26, 2024

Fault Tolerant Computing
©Y.K. Malaiya

3

Research: Search Databases

Specific sources: database indexes

• Google Scholar
– Forward links: Paper X Cited by

– Backward Links: Paper X cites

• Researcher sites
– Personal/Group Website

– DBLP

– Google Scholar: researcher

• CSU Library  etc.

General  (accessible through CSU Library)

• ACM Digital Library

• IEEEXplore Digital Library

• ScienceDirect etc

https://scholar.google.com/scholar?cites=10798677200747824320&as_sdt=4005&sciodt=0,6&hl=en
https://ieeexplore.ieee.org/abstract/document/630850/citations
https://scholar.google.com/citations?view_op=search_authors&hl=en&mauthors=Omar+Alhazmi&btnG=
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Research: Source types

• Journals: published several times a year

– Rigorously reviewed, long publication delay

– Journal, Transactions, …

• Conferences: held once a year, proceedings published
– Conference, Symposium, … 

• Research groups

– Industry, academic, consultants: web site

• News, Industry publications

– Magazines, blogs, white papers, product website

• Books: often well-known stuff



5 September 26, 2024

Fault Tolerant Computing
©Y.K. Malaiya

5

Research: How to Read a Paper: THE THREE-PASS 

APPROACH

• The first pass: Read 
– the title, abstract, and introduction

– section and sub-section headings, but ignore everything else

– the conclusions

• The second pass: Read 
– figures, diagrams and other illustrations

–  mark relevant unread references for further reading

– Do you need to read it in detail? 

• The third pass: Read critically
– identify and challenge assumption and views

– Loop up  references needed
Keshav, S., How to Read a Paper, ACM SIGCOMM, 
http://ccr.sigcomm.org/online/files/p83-keshavA.pdf
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Research: Avoid Prior Bias
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Evaluating research

• These are the attributes generally evaluated

• Novelty/interest/Applicability

• Technical: Extent of research/contribution

– Key sources? Recent developments?

– citations

• Presentation

– Visuals: Non-text: diagrams, charts, algorithms

– Systematic/quantitative: tables, numbers

– Readability, coherence

• Overall
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Course Notes
• The Midterm and the Final will use the Respondus 

Lockdown Browser with camera recording. 
– You must use a laptop with the Respondus Lockdown 

Browser installed and tested. A test quiz will be provided.

• The Sec 001 students will bring the fully charged and 
tested laptop to the designated room. 
– The 1 hour 15 min Midterm will be on Tues Oct 8 during the 

regular class time.

• The Sec 801 students will take their Midterm on Oct 9 
any time from 12:10 AM (early morning) to 11:50 PM.

• Anyone with a significant conflict should contact me 
directly.
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Process Synchronization: Outline

Critical-section problem to ensure the consistency of 

shared data

Software and hardware solutions of the critical-section 

problem

Peterson’s solution

Atomic instructions

Mutex locks and semaphores

Classical process-synchronization problems

Bounded buffer, 

Readers Writers, 

Dining Philosophers

Another approach: Monitors
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Semaphores: Implementation with no Busy waiting

wait(semaphore *S) { 

   S->value--; 

   if (S->value < 0) {

      add this process to S->list; 

      block(); 

   } 

}

signal(semaphore *S) { 

   S->value++; 

   if (S->value <= 0) {

      remove a process P from S->list; 

      wakeup(P); 

   } 

} 

typedef struct{ 

   int value; 

   struct process *list; 

   } semaphore; 

If value < 0
abs(value) is the number

of waiting processes
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Bounded-Buffer Problem

• n buffers, each can hold one item

• Binary semaphore (mutex) 

– Provides mutual exclusion for accesses to buffer 
pool 

– Initialized to 1 

• Counting semaphores 

– empty: Number of empty slots available 
• Initialized to n 

– full: Number of filled slots available n 
• Initialized to 0 

3 semaphores needed,
1 binary, 2 counting
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Bounded-Buffer : Note

• Producer and consumer must be ready before they 
attempt to enter critical section 

• Producer readiness? 
– When a slot is available to add produced item 

• wait(empty) 

– empty is initialized to n 

• Consumer readiness? 
– When a producer has added new item to the buffer 

• wait(full) 

– full initialized to 0

empty: Number of empty slots available
 wait(empty) wait until at least 1 empty

full: Number of filled slots available
wait(full)  wait until at least 1 full 
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Bounded Buffer Problem (Cont.)

The structure of the producer process

     do { 

          ...

        /* produce an item in next_produced */ 

          ... 

        wait(empty);        wait till slot available

        wait(mutex);    Allow producer OR consumer to (re)enter critical section

           ...

        /* add next produced to the buffer */ 

           ... 

        signal(mutex); Allow producer OR consumer to (re)enter critical section

        signal(full);       signal consumer that a slot is available

     } while (true);

empty: initialized to n
full: initialized to 0
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Bounded Buffer Problem (Cont.)

The structure of the consumer process

     Do { 

        wait(full); wait till slot available for consumption 

        wait(mutex); Only producer OR consumer can be in critical section 

           ...

       /* remove an item from buffer to next_consumed */ 

           ... 

        signal(mutex); Allow producer OR consumer to (re)enter critical section

        signal(empty); signal producer that a slot is available to add 

           ...

        /* consume the item in next consumed */ 

           ...

     } while (true); 

empty: initialized to n
full: initialized to 0



15

Classical Problems of Synchronization

Classical problems 
– Bounded-Buffer Problem

– Readers and Writers Problem

– Dining-Philosophers Problem

• Bounded buffer Review
– n buffers, each can hold one item

– A binary semaphore: mutex 
• Provides mutual exclusion for accesses to buffer pool 

• Initialized to 1 

– Two counting semaphores 
• empty: Number of empty slots available, Initialized to n 

• full: Number of filled slots available n, Initialized to 0 
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Readers-Writers Problem

• A data set is shared among a number of 
concurrent processes
– Readers – only read the data set; they do not perform 

any updates

– Writers   – can both read and write

• Problem 
– allow multiple readers to read at the same time

– Only one single writer can access the shared data at the 
same time. No readers permitted when writer is 
accessing the data.

• Several variations of how readers and writers are 
considered  – all involve some form of priorities
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Readers-Writers Problem

• Shared Data

– Data set

– Semaphore rw_mutex initialized to 1  (mutual exclusion 

for writer)

– Semaphore  mutex initialized to 1     (mutual exclusion for 

read_count)

– Integer read_count initialized to 0    (how many readers?)
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Readers-Writers Problem (Cont.)

• The structure of a writer process
        

       do {

       wait(rw_mutex); 

               ...

       /* writing is performed */ 

               ... 

          signal(rw_mutex); 

     } while (true);
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Readers-Writers Problem (Cont.)

• The structure of a reader process
       do {

         wait(mutex);

           read_count++;

           if (read_count == 1) 

                   wait(rw_mutex); 

           signal(mutex); 

               ...

           /* reading is performed */ 

               ... 

           wait(mutex);

           read count--;

           if (read_count == 0) 

                  signal(rw_mutex); 

           signal(mutex); 

       } while (true);

       

mutex for mutual
exclusion to read_count

When:
 writer in critical section
 and if n readers waiting
1 is queued on rw_mutex
(n-1) queued on mutex

Cannot read 
if writer is 

writing 

First reader needs to wait for the writer to finish. 
If other  readers are already reading, a new reader
Process just goes in.

When the last reader leaves, a writer can go in.
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Readers-Writers Problem Variations

• First  variation – no reader kept waiting 
unless writer has already obtained 
permission to use shared object

• Second variation – once writer is ready, it 
performs the write ASAP, i.e. if a writer is 
waiting, no new readers may start. 

• Both may have starvation leading to even 
more variations

• Problem is solved on some systems by 
kernel providing reader-writer locks
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Dining-Philosophers Problem

• Philosophers spend their lives alternating thinking and eating

• Don’t interact with their neighbors, occasionally try to pick up 2 
chopsticks (one at a time) to eat from bowl

– Need both to eat, 

– then release both when done

• Each chopstick is a semaphore

– Grab by executing wait ( )

– Release by executing signal ( )

• Shared data 

• Bowl of rice (data set)

• Semaphore chopstick [5] initialized to 1



22

Dining-Philosophers Problem

Plato, Confucius, Socrates, Voltaire and Descartes
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Dining-Philosophers Problem Algorithm: Simple solution?

• The structure of Philosopher i:
do { 

    wait (chopstick[i] );

   wait (chopStick[ (i + 1) % 5] );

 

              //  eat

   signal (chopstick[i] );

   signal (chopstick[ (i + 1) % 5] );

 

                 //  think

} while (TRUE);

•   What is the problem with this algorithm?
– If all of them pick up the the left chopstick first  - 

Deadlock
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Dining-Philosophers Problem Algorithm (Cont.)

• Deadlock handling

–  Allow at most 4 philosophers to be sitting 
simultaneously at  the table (with the same 5 forks).

–  Allow a philosopher to pick up  the forks only if 
both are available (picking must be done in a critical 
section.

–  Use an asymmetric solution  -- an odd-numbered  
philosopher picks  up first the left chopstick and 
then the right chopstick. Even-numbered  
philosopher picks  up first the right chopstick and 
then the left chopstick. 
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Problems with Semaphores

•  Incorrect use of semaphore operations:

–  Omitting  of wait (mutex) 

• Violation of mutual exclusion

– or signal (mutex)
• Deadlock!

• Solution: 

– Monitors: a higher-level implementation of 
synchronization
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Monitors
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Monitors

Monitor: A high-level abstraction that provides a 
convenient and effective mechanism for process 
synchronization
• Abstract data type, internal variables only accessible by 

code within the procedure
• Only one process may be active within the monitor at a 

time
– Automatically provide mutual exclusion
– Implement waiting for conditions

• Queues:
 - for entry
 - for each condition

• Originally proposed for Concurrent Pascal 1975
• Directly supported by Java (see self exercise) but not C
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Monitors

• Only one process may be actively under execution in the 
monitor. 

• A generic monitor construct is used here. Implementation 
varies by language.

monitor monitor-name

{

 // shared variable declarations

 

  procedure P1 (…) { …. }

 procedure Pn (…) {……}

  Initialization code (…) { … }

 }

}
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Preliminary Schematic view of a Monitor

Only one process/thread in 
the Monitor

• Provides an easy way to 
achieve mutual exclusion

But … we also need a way for 
processes to block
when they cannot proceed.

• Refinement next …

Shows 4 processes waiting in the queue.
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Condition Variables

Some actions need some conditions to go ahead. 

The condition construct

• condition x, y;

• Two operations are allowed on a condition 
variable:

– x.wait() –  a process that invokes the operation 
is suspended until x.signal() 

– x.signal() – resumes one of processes (if any) 
that invoked x.wait()
• If no x.wait() on the condition variable, then it has no 

effect on the variable. Signal is lost.

Compare with semaphore.
Here no integer value is 

associated.
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Difference between the signal() in semaphores and monitors 

• Condition variables in Monitors: Not persistent 

– If a signal is performed and no waiting threads? 

• Signal is simply ignored 

– During subsequent wait operations 

• Thread (or process) blocks     

• Compare with semaphores 

– Signal increments semaphore value even if there 
are no waiting threads 

• Future wait operations would immediately 
succeed! 
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Monitor with Condition Variables
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Condition Variables Choices

• If process P invokes x.signal(), and process Q is 
suspended in x.wait(), what should happen next?
– Both Q and P cannot execute in parallel. If Q is resumed, 

then P must wait

• Options include
– Signal and wait – P waits until Q either leaves the monitor or 

it waits for another condition
– Signal and continue – Q waits until P either leaves the 

monitor or it  waits for another condition
– Both have pros and cons – language implementer can decide
– Monitors implemented in Concurrent Pascal (‘75) 

compromise
• P executing signal immediately leaves the monitor, Q is resumed
• Implemented in other languages including C#, Java
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Monitor Solution to Dining Philosophers: Deadlock-free

enum {THINKING,HUNGRY,EATING} state[5];

• state[i] = EATING only if
– state[(i+4)%5] != EATING &&   state[(i+1)%5] != EATING 

• condition self[5]

– Delay self when HUNGRY but unable to get chopsticks

Sequence of actions

• Before eating, must invoke pickup()
– May result in suspension of philosopher process
– After completion of operation, philosopher may eat

think

DiningPhilosophers.pickup(i);

eat

DiningPhilosophers.putdown(i);

think



35

Monitor Solution to Dining Philosophers: Deadlock-free

enum {THINKING,HUNGRY,EATING} state[5];

Process i
Process 
(i+1)%5

Process 
(i+4)%5

test(i) test((i+1)%5)test((i+4)%5)

state(i) state((i+1)%5)state((i+4)%5)

Can I eat? If not, I’ll wait
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The pickup() and putdown()   operations

monitor DiningPhilosophers

{ 

 enum { THINKING, HUNGRY, EATING} state [5] ;

 condition self [5];

 void pickup (int i) { 

        state[i] = HUNGRY;

        test(i);   //below

        if (state[i] != EATING) self[i].wait;

   }

 

   void putdown (int i) { 

        state[i] = THINKING;

                   // test left and right neighbors

         test((i + 4) % 5);

         test((i + 1) % 5);

   }  void test (int i) { 

         if ((state[(i + 4) % 5] != EATING) &&

         (state[i] == HUNGRY) &&

         (state[(i + 1) % 5] != EATING) ) { 

              state[i] = EATING ;

      self[i].signal () ;

         }

   }

       initialization_code() { 

        for (int i = 0; i < 5; i++)

        state[i] = THINKING;

      }

}

Suspend self if 
unable  to acquire 

chopstick

Check to see if person 
on left or right can use 

the chopstick

Eat only if HUNGRY 
and Person on Left 

AND Right
are not eating

Signal a process that 
was suspended while 

trying to eat
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• Philosopher i can starve if eating periods of
    philosophers on left and right overlap
• Possible solution

– Introduce new state: STARVING
– Chopsticks can be picked up if no neighbor is 

starving
• Effectively wait for neighbor’s neighbor to stop eating
• REDUCES concurrency!

       

Possibility of starvation
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Monitor Implementation of Mutual Exclusion

For each monitor  
• Semaphore mutex initialized to 1  
• Process must execute 

– wait(mutex)  :  Before entering the monitor 
– signal(mutex):  Before leaving the monitor 
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Resuming Processes within a Monitor

• If several processes queued on condition 
x, and x.signal() is executed, which should 
be resumed?

• FCFS frequently not adequate 

• conditional-wait construct of the form 
x.wait(c)

– Where c is priority number

– Process with lowest number (highest priority) 
is scheduled next



40

• Allocate a single resource among competing processes using 
priority numbers that specify the maximum time a process  plans to 
use the resource

          R.acquire(t);
                   ...
           access the resource;
                   ...

           R.release;

• Where R is an instance of  type ResourceAllocator

• A monitor based solution next.

       

Single Resource allocation 
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A Monitor to Allocate Single Resource
monitor ResourceAllocator 

{ 

 boolean busy; 

 condition x; 

 void acquire(int time) { 

  if (busy) 

   x.wait(time);  

  busy = TRUE; 

 } 

 void release() { 

  busy = FALSE; 

  x.signal(); 

 } 

    initialization code() {

  busy = FALSE; 

 }

}   

Sleep, Time used 
to prioritize 

waiting 
processes

Wakes up 
one of the 
processes
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Java Synchronization
• For simple synchronization,  Java provides the synchronized keyword

–  synchronizing methods
public synchronized void increment( ) { c++; } 
– synchronizing blocks

synchronized(this) {
  lastName = name;
  nameCount++;
 }

• wait() and notify() allows a thread to  wait for an event. A call to 
notifyAll() allows all threads that are on wait() with the same lock to 
be notified.

• notify() notifies one thread from a pool of identical threads, notifyAll() 
when threads have different purposes

• For more sophisticated locking mechanisms, starting from Java 5, the 
package java.concurrent.locks provides additional capabilities.
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Java Synchronization

Each object automatically has a monitor (mutex) associated with it

• When a method is synchronized, the runtime must obtain the lock on the object's monitor before 
execution of that method begins (and must release the lock before control returns to the calling 
code)

wait() and notify() allows a thread to  wait for an event. 

• wait( ): Causes the current thread to wait until another thread invokes the notify() method or 
the notifyAll() method for this object.

• notify(): Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting 
on this object, one of them is chosen to be awakened.

• A call to notifyall() allows all threads that are on wait() with the same lock to be released, they will 
run in sequence according to priority.

https://www.baeldung.com/java-wait-notify
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Java Synchronization: Dining Philosophers

public synchronized void pickup(int i)
    throws InterruptedException {
        setState(i, State.HUNGRY);
        test(i);
        while (state[i] != State.EATING) {
            this.wait();
            // Recheck condition in loop,
            // since we might have been notified
            // when we were still hungry
        }
    }

private synchronized void test(int i) {
        if (state[left(i)] != State.EATING &&
            state[right(i)] != State.EATING &&
            state[i] == State.HUNGRY)
        {
            setState(i, State.EATING);
            // Wake up all waiting threads
            this.notifyAll();
        }
    }

public synchronized void putdown(int i) {
        setState(i, State.THINKING);
        test(right(i));
        test(left(i));
    }
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Synchronization Examples

• Solaris

• Windows

• Linux

• Pthreads
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Solaris Synchronization

• Implements a variety of locks to support multitasking, 
multithreading (including real-time threads), and 
multiprocessing

• Uses adaptive mutexes for efficiency when protecting 
data from short code segments
– Starts as a standard semaphore spin-lock
– If lock held, and by a thread running on another CPU, spins
– If lock held by non-run-state thread, block and sleep waiting for signal of lock being released

• Uses condition variables 
• Uses readers-writers locks when longer sections of code 

need access to data
• Uses turnstiles to order the list of threads waiting to 

acquire either an adaptive mutex or reader-writer lock
– Turnstiles are per-lock-holding-thread, not per-object

• Priority-inheritance per-turnstile gives the running thread 
the highest of the priorities of the threads in its turnstile
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Windows Synchronization

• Uses interrupt masks to protect access to global 
resources on uniprocessor systems

• Uses spinlocks on multiprocessor systems
– Spinlocking-thread will never be preempted

• Also provides dispatcher objects user-land 
which may act mutexes, semaphores, events, 
and timers
– Events

• An event acts much like a condition variable

– Timers notify one or more thread when time expired

– Dispatcher objects either signaled-state (object 
available) or non-signaled state (thread will block)
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Linux Synchronization

• Linux:
– Prior to kernel Version 2.6, disables interrupts to 

implement short critical sections

– Version 2.6 and later, fully preemptive

• Linux provides:
– Semaphores

– atomic operations on integers

– spinlocks

– reader-writer versions of both

• On single-cpu system, spinlocks replaced by 
enabling and disabling kernel preemption
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Pthreads Synchronization

• Pthreads API is OS-independent

• It provides:

– mutex locks

– condition variable

• Non-portable extensions include:

– read-write locks

– spinlocks
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Alternative Approaches

• Transactional Memory

• OpenMP

• Functional Programming Languages
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• A memory transaction is a sequence of 
read-write operations to memory that are 
performed atomically without the use of 
locks.

         void update(){
    atomic{

    /* modify shared data*/

    }

     }

May be implemented by hardware or software.

Transactional Memory
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• OpenMP is a set of compiler directives and 
API that support parallel programming.

     void update(int value)
     {

   #pragma omp critical

   {

     count += value

   }

  }

The code contained within the #pragma omp critical  
directive is treated as a critical section and performed 
atomically.

OpenMP
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Chapter 8:  Deadlocks

• System Model

• Deadlock Characterization

• Methods for Handling Deadlocks

– Deadlock Prevention

– Deadlock Avoidance resource-allocation

– Deadlock Detection 

– Recovery from Deadlock 
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Deadlock

• Can you give a real life example of a deadlock?
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A Kansas Law

• Early 20th century Kansas Law

– “When two trains approach each other at a 
crossing, both shall come to a full stop and neither 
shall start up again until the other has gone” 

• Story of the two silly goats: Aesop 6th cent BCE?

https://www.youtube.com/watch?v=7D59nSKzwsE
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A contemporary example
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