
1 1

Colorado State University
Yashwant K Malaiya

Fall 2024 L11
Synchronization

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Process Synchronization: Outline

Critical-section problem to ensure the consistency of

shared data

Software and hardware solutions of the critical-section

problem

Peterson’s solution

Atomic instructions

Mutex locks and semaphores

Classical process-synchronization problems

Bounded buffer, Readers Writers, Dining Philosophers

Another approach: Monitors

3

Race Condition

They run concurrently, and are subject to context switches at unpredictable times.

Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

counter++ could be compiled as

 register1 = counter

 register1 = register1 + 1

 counter = register1

counter-- could be compiled as

 register2 = counter

 register2 = register2 - 1

 counter = register2

Overwrites!

4

Critical Section Problem

We saw race condition between counter ++ and counter –

Solution to the “race condition” problem: critical section
• Consider system of n processes {p0, p1, … pn-1}
• Each process has critical section segment of code

– Process may be changing common variables, updating table, writing
file, etc

– When one process in critical section, no other may be in its critical
section

• Critical section problem is to design protocol to solve this
• Each process must ask permission to enter critical section in

entry section, may follow critical section with exit section,
then remainder section follows.

Race condition: when outcome depends on timing/order that is not predictable

5

General structure: Critical section

do {

 entry section

 critical section

 exit section

 remainder section

 } while (true);

Request permission
to enter

Housekeeping to let
other processes to

enter

A process is prohibited from entering the critical section while another
process is in it.
Multiple processes are trying to enter the critical section concurrently by
executing the same code.

6

Solution to Critical-Section Problem
A good solution to the critical-section problem should have these

attributes

1. Mutual Exclusion - If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter
the critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its
critical section and before that request is granted

 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the n processes

7

Peterson’s Solution

• Good algorithmic description of solving the problem
• Two process solution only
• Assume that the load and store machine-language

instructions are atomic; that is, cannot be interrupted
• The two processes share two variables:

– int turn;

– Boolean flag[2]

– The variable turn indicates whose turn it is to enter the
critical section

– The flag array is used to indicate if a process is ready to
enter the critical section. flag[i] = true implies that
process Pi is ready to enter!

8

Algorithm for Process Pi

do {

 flag[i] = true;

 turn = j;

 while (flag[j] && turn = = j); /*Wait*/

 critical section

 flag[i] = false;

 remainder section

 } while (true);

• The variable turn indicates whose turn it is to enter the critical
section

• The flag array is used to indicate if a process is ready to enter the
critical section. flag[i] = true implies that process Pi is ready!

• Note: Entry section- Critical section-Exist section
• These algorithms assume 2 or more processes are trying to get in the

critical section.

Being
nice!

For process Pi,
Pj runs the same code

concurrently

9

Peterson’s Solution (Cont.)

Provable that the three CS requirement are met:
 1. Mutual exclusion is preserved
 Pi enters CS only if:
 either flag[j] = false or turn = i
 2. Progress requirement is satisfied
 If a process wants to enter, it only has to wait until the other finishes.

 3. Bounded-waiting requirement is met.
 A process waits only one turn.

Detailed proof in the text.

Note: there exists a generalization of Peterson’s solution for more than 2 processes, but bounded waiting is
not assured. May not work in multiple processor systems, turn may be modified by by both processors.

10

Synchronization: Hardware Support

• Most modern processors provide hardware
support (ISA) for implementing the critical
section code. FAQ

• All solutions below based on idea of locking
– Protecting critical regions via locks

• Modern machines provide special atomic
hardware instructions (binary machine instructions, not high-
level like C)

• Atomic = non-interruptible

– test memory word and set value
– swap contents of two memory words
– others

11

Solution 1: using test_and_set()

• Shared Boolean variable lock, initialized to FALSE
• Solution:
 do {
 while (test_and_set(&lock)) ; /* do nothing */

 /* critical section */

 …..

 lock = false;

 /* remainder section */

 … ..

 } while (true);

To break out:
Return value of
TestAndSet should be

FALSE

If two TestAndSet() are attempted simultaneously, they
will be executed sequentially in some arbitrary order

Lock TRUE: locked, Lock FALSE: not locked. Lock is a shared variable.
test_and_set(&lock) returns the lock value and then sets it to True.

12

test_and_set(&lock)

Process 0 Process 1Lock

test_and_set(&lock)

Critical section

lock = false

test_and_set(&lock)

Busy waiting

test_and_set(&lock)

Critical section

lock = false

Locked by Process 0

Locked by Process 1

Shared variable lock is initially FALSE

while (test_and_set(&lock)) ; /* do nothing */

 /* critical section */

 …..

 lock = false;

 /* remainder section */

13

Solution 2: Swap: Hardware implementation

Another way of sensing/setting the lock (next slide).

Background: Remember this C code?

void Swap(boolean *a, boolean *b) {
boolean temp = *a;

*a = *b;

*b = temp;

}

14

Using Swap (concurrently executed by both)

do {
key = TRUE;
while (key == TRUE) {

Swap(&lock, &key)
}

critical section

lock = FALSE;

remainder section

} while (TRUE);

Lock is a SHARED variable.
Key is a variable local to the process.

Lock == false when no process is in
critical section.

Cannot enter critical section UNLESS
lock == FALSE by other process or initially

If two Swap() are executed
simultaneously, they will be executed
sequentially in some arbitrary order

15

Swap()

Process 0 Process 1Lock
Key = TRUE
Swap ()
Key ==FALSE, enter

Critical section

Lock = FALSE

Key = TRUE
Swap ()
Key == TRUE, wait

Busy waiting

Swap (), Key ==False

Critical section

Lock = FALSE

Locked by Process 0

Locked by Process 1

Lock = FALSE

Lock = TRUE

Note: I created this to visualize the mechanism. It is not in the book. - Yashwant

16

Bounded-waiting Mutual Exclusion with test_and_set

For process i:

do {

 waiting[i] = true;

 key = true;

 while (waiting[i] && key)

 key = test_and_set(&lock);

 waiting[i] = false;

 /* critical section */

 j = (i + 1) % n;

 while ((j != i) && !waiting[j])

 j = (j + 1) % n;

 if (j == i)

 lock = false;

 else

 waiting[j] = false;

 /* remainder section */

} while (true);

Shared Data structures initialized to FALSE

• boolean waiting[n]; Pr n wants to enter

• boolean lock;

The entry section for process i :

• First process to execute TestAndSet will find key ==
false ; ENTER critical section,

• EVERYONE else must wait

The exit section for process i:

Attempts to finding a suitable waiting process j (while
loop) and enable it,

or if there is no suitable process, make lock FALSE.

17

Bounded-waiting Mutual Exclusion with test_and_set

The previous algorithm satisfies the three requirements

• Mutual Exclusion: The first process to execute TestAndSet(lock)
when lock is false, will set lock to true so no other process can
enter the CS.

• Progress: When a process i exits the CS, it either sets lock to
false, or waiting[i] to false (allowing j to get in) , allowing the
next process to proceed.

• Bounded Waiting: When a process exits the CS, it examines all
the other processes in the waiting array in a circular order. Any
process waiting for CS will have to wait at most n-1 turns

18

Mutex Locks

Previous solutions are complicated and generally
inaccessible to application programmers

OS designers build software tools to solve critical
section problem

Simplest is mutex lock (boolean mutual exclusion)

Protect a critical section by first acquire() a lock
then release() the lock

Boolean variable indicating if lock is available or not

Calls to acquire() and release() must be atomic
Usually implemented via hardware atomic instructions

But this solution requires busy waiting
This lock therefore called a spinlock

19

acquire() and release()

•Usage

 do {

 acquire lock

 critical section

 release lock

 remainder section

 } while (true);

acquire() {

 while (!available)

 ; /* busy wait */

release() {

 available = true;

 }

20

acquire() and release()

Process 0 Process 1Lock

Start acquire, get lock

Critical section

Release lock

Start acquire

Busy waiting

Gets lock

Critical section

Release lock

Locked by Process 0

Locked by Process 1

21

How are locks supported by hardware?

• Atomic read-modify-write

• Atomic instructions in x86
– LOCK instruction prefix, which applies to an instruction does a

read-modify-write on memory (INC, XCHG, CMPXCHG etc)

– Ex: lock cmpxchg <dest>, <source>

• In RISK processors? Instruction-pairs

– LL (Load Linked Word), SC (Store Conditional Word) instructions in MIPS

– LDREX, STREX in ARM

– Creates an atomic sequence

22

Semaphores by Dijkstra

• Synchronization tool that provides more sophisticated ways (than Mutex locks) for
process to synchronize their activities.

• Semaphore S – integer variable

• Can only be accessed via two indivisible (atomic) operations

– wait() and signal()

• Originally called P() and V()based on Dutch words

• Definition of the wait() operation

wait(S) {

 while (S <= 0)

 ; // busy wait

 S--;

}

• Definition of the signal() operation

signal(S) {

 S++;

}

Binary semaphore:
When s is 0 or 1, it is
a mutex lock

Waits until
another process

makes S=1

23

Wait(S) and Signal (S)

Process 0 Process 1Semaphore S

Wait(S)

Critical section

Signal (S)

Wait (S)

Busy waiting

Gets lock, S- -

Critical section

Signal (S)

S =0

Locked by Process 1

S =1

S =0

S =1

S =1

24

Semaphores

25

Semaphore Usage

• Counting semaphore – integer value can range over an unrestricted
domain

• Binary semaphore – integer value can range only between 0 and 1

– Practically same as a mutex lock

• Can solve various synchronization problems

• Ex: Consider P1 and P2 that requires event S1 to happen before S2

 Create a semaphore “synch” initialized to 0 i.e not available

• Can implement a counting semaphore S as a binary semaphore

P1:

 S1;

 signal(synch);

P2:

 wait(synch);

 S2;

26

The counting semaphore

• Controls access to a finite set of resources

• Initialized to the number of resources

• Usage:

– Wait (S): to use a resource

– Signal (S): to release a resource

• When all resources are being used: S == 0

– Block until S > 0 to use the resource

Applicable to different types of synchronization problems.
0: no waiting threads (or processes)
Positive: no waiting threads, a wait operation would not put the invoking thread in queue.
Negative: number of threads waiting

27

Semaphore Implementation

• Must guarantee that no two processes can execute
the wait() and signal() on the same semaphore
at the same time

• Thus, the implementation becomes the critical
section problem where the wait and signal code
are placed in the critical section
– Could now have busy waiting in critical section

implementation
• But implementation code is short
• Little busy waiting if critical section rarely occupied

• Note that some applications may spend lots of time
in critical sections and therefore this is not a good
solution

• Alternative: block and wakeup (next slide)

28

Semaphore Implementation with no Busy waiting

• With each semaphore there is an associated waiting queue
• Each entry in a waiting queue has two data items:

– value (of type integer)
– pointer to next record in the list

• Two operations:
– block – place the process invoking the operation on the

appropriate waiting queue
– wakeup – remove one of processes in the waiting queue and

place it in the ready queue

• typedef struct{

 int value;

 struct process *list;

 } semaphore;

29

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {

 S->value--;

 if (S->value < 0) {

 add this process to S->list;

 block();

 }

}

signal(semaphore *S) {

 S->value++;

 if (S->value <= 0) {

 remove a process P from S->list;

 wakeup(P);

 }

}

typedef struct{

 int value;

 struct process *list;

 } semaphore;

If value < 0
abs(value) is the number

of waiting processes

30

Deadlock and Starvation

• Deadlock – two or more processes are waiting
indefinitely for an event that can be caused by only one
of the waiting processes

• Let S and Q be two semaphores initialized to 1

 P0 P1

 wait(S); wait(Q);

 wait(Q); wait(S);

 signal(S); signal(Q);

 signal(Q); signal(S);

– P0 executes wait(s), P1 executes wait(Q)
• P0 must wait till P1 executes signal(Q)

• P1 must wait till P0 executes signal(S) Deadlock!

31

Priority Inversion

• Priority Inversion – Scheduling problem when
lower-priority process PL holds a lock needed by
higher-priority process PH.
– The low priority task may be preempted by a medium

priority task PM which does not use the lock, causing
PH to wait because of PM.

• Solved via priority-inheritance protocol
– Process accessing resource needed by higher priority process

Inherits higher priority till it finishes resource use

– Once done, process reverts to lower priority

Mars pathfinder
Mission problem 1997

32

Classical Problems of Synchronization

• Classical problems used to test newly-proposed
synchronization schemes

– Bounded-Buffer Problem

– Readers and Writers Problem

– Dining-Philosophers Problem

• Monitors: higher level handling f
synchronization

33

Bounded-Buffer Problem

• n buffers, each can hold one item

• Binary semaphore (mutex)

– Provides mutual exclusion for accesses to buffer
pool

– Initialized to 1

• Counting semaphores

– empty: Number of empty slots available
• Initialized to n

– full: Number of filled slots available n
• Initialized to 0

3 semaphores needed,
1 binary, 2 counting

34

Bounded-Buffer : Note

• Producer and consumer must be ready before they
attempt to enter critical section

• Producer readiness?
– When a slot is available to add produced item

• wait(empty)

– empty is initialized to n

• Consumer readiness?
– When a producer has added new item to the buffer

• wait(full)

– full initialized to 0

empty: Number of empty slots available
 wait(empty) wait until at least 1 empty

full: Number of filled slots available
wait(full) wait until at least 1 full

35

Bounded Buffer Problem (Cont.)

The structure of the producer process

 do {

 ...

 /* produce an item in next_produced */

 ...

 wait(empty); wait till slot available

 wait(mutex); Allow producer OR consumer to (re)enter critical section

 ...

 /* add next produced to the buffer */

 ...

 signal(mutex); Allow producer OR consumer to (re)enter critical section

 signal(full); signal consumer that a slot is available

 } while (true);

empty: initialized to n
full: initialized to 0

36

Bounded Buffer Problem (Cont.)

The structure of the consumer process

 Do {

 wait(full); wait till slot available for consumption

 wait(mutex); Only producer OR consumer can be in critical section

 ...

 /* remove an item from buffer to next_consumed */

 ...

 signal(mutex); Allow producer OR consumer to (re)enter critical section

 signal(empty); signal producer that a slot is available to add

 ...

 /* consume the item in next consumed */

 ...

 } while (true);

empty: initialized to n
full: initialized to 0

37

Readers-Writers Problem

• A data set is shared among a number of
concurrent processes
– Readers – only read the data set; they do not perform

any updates

– Writers – can both read and write

• Problem
– allow multiple readers to read at the same time

– Only one single writer can access the shared data at the
same time. No readers permitted when writer is
accessing the data.

• Several variations of how readers and writers are
considered – all involve some form of priorities

38

Readers-Writers Problem

• Shared Data

– Data set

– Semaphore rw_mutex initialized to 1 (mutual exclusion

for writer)

– Semaphore mutex initialized to 1 (mutual exclusion for

read_count)

– Integer read_count initialized to 0 (how many readers?)

39

Readers-Writers Problem (Cont.)

• The structure of a writer process

 do {

 wait(rw_mutex);

 ...

 /* writing is performed */

 ...

 signal(rw_mutex);

 } while (true);

40

Readers-Writers Problem (Cont.)

• The structure of a reader process
 do {

 wait(mutex);

 read_count++;

 if (read_count == 1)

 wait(rw_mutex);

 signal(mutex);

 ...

 /* reading is performed */

 ...

 wait(mutex);

 read count--;

 if (read_count == 0)

 signal(rw_mutex);

 signal(mutex);

 } while (true);

mutex for mutual
exclusion to read_count

When:
 writer in critical section
 and if n readers waiting
1 is queued on rw_mutex
(n-1) queued on mutex

Cannot read
if writer is

writing

First reader needs to wait for the writer to finish.
If other readers are already reading, a new reader
Process just goes in.

When the last reader leaves, a writer can go in.

41

Readers-Writers Problem Variations

• First variation – no reader kept waiting
unless writer has already obtained
permission to use shared object

• Second variation – once writer is ready, it
performs the write ASAP, i.e. if a writer is
waiting, no new readers may start.

• Both may have starvation leading to even
more variations

• Problem is solved on some systems by
kernel providing reader-writer locks

	Slide 1
	Slide 2: Process Synchronization: Outline
	Slide 3: Race Condition
	Slide 4: Critical Section Problem
	Slide 5: General structure: Critical section
	Slide 6: Solution to Critical-Section Problem
	Slide 7: Peterson’s Solution
	Slide 8: Algorithm for Process Pi
	Slide 9: Peterson’s Solution (Cont.)
	Slide 10: Synchronization: Hardware Support
	Slide 11: Solution 1: using test_and_set()
	Slide 12: test_and_set(&lock)
	Slide 13: Solution 2: Swap: Hardware implementation
	Slide 14: Using Swap (concurrently executed by both)
	Slide 15: Swap()
	Slide 16: Bounded-waiting Mutual Exclusion with test_and_set
	Slide 17: Bounded-waiting Mutual Exclusion with test_and_set
	Slide 18: Mutex Locks
	Slide 19: acquire() and release()
	Slide 20: acquire() and release()
	Slide 21: How are locks supported by hardware?
	Slide 22: Semaphores by Dijkstra
	Slide 23: Wait(S) and Signal (S)
	Slide 24: Semaphores
	Slide 25: Semaphore Usage
	Slide 26: The counting semaphore
	Slide 27: Semaphore Implementation
	Slide 28: Semaphore Implementation with no Busy waiting
	Slide 29: Implementation with no Busy waiting (Cont.)
	Slide 30: Deadlock and Starvation
	Slide 31: Priority Inversion
	Slide 32: Classical Problems of Synchronization
	Slide 33: Bounded-Buffer Problem
	Slide 34: Bounded-Buffer : Note
	Slide 35: Bounded Buffer Problem (Cont.)
	Slide 36: Bounded Buffer Problem (Cont.)
	Slide 37: Readers-Writers Problem
	Slide 38: Readers-Writers Problem
	Slide 39: Readers-Writers Problem (Cont.)
	Slide 40: Readers-Writers Problem (Cont.)
	Slide 41: Readers-Writers Problem Variations

