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Tracking SRTF and RR

• Shortest remaining time first (Preemptive SJF)
– Need to track the remaining time for all processes

• Round Robin
– Need to track the position of the processes in the Ready 

Queue

– Also need to track the remaining time needed

– Illustration on youtube

– Animation CPU Scheduling Algorithm Visualization

• Time quantum- How to decide? 
– Rule of thumb: 80% of CPU bursts should be shorter than q

Disclaimer: I have not verified the accuracy of the on-line sources.

https://www.youtube.com/watch?v=3N2t9_6Co3U
https://codepen.io/faso/pen/zqWGQW
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Project

• See Schedule/Proj Proposal or Canvas/Assignments

• Choices: Research (topics provided) or development (IoT). Some 

research/original thinking required for either.

• Deadlines: subject to revision.

– D1. Team composition and idea proposal, 9/24/24

– D2. Progress report, 10/31/24

– D3. Slides and final reports, 11/20/24

– D4. Presentations/demos 12/2-12/5 as arranged

– D5: Peer Reviews due 12/6/24

• Teams: 2-3 students (see Teams channel “Project 
Teams”).
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Multilevel Queue Scheduling

Real-time processes may have the highest priority.
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Multilevel Feedback Queue

• A process can move between the various queues; 
aging can be implemented this way

• Multilevel-feedback-queue scheduler defined by 
the following parameters:
– number of queues

– scheduling algorithms for each queue

– method used to determine when to upgrade a process

– method used to determine when to demote a process

– method used to determine which queue a process will 
enter when that process needs service

– Details at ARPACI-DUSSEAU

Inventor FJ Corbató won the Touring award!

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf
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Example of Multilevel Feedback Queue

• Three queues: 
– Q0 – RR with time quantum 8 milliseconds

– Q1 – RR time quantum 16 milliseconds

– Q2 – FCFS (no time quantum limit)

• Scheduling
– A new job enters queue Q0 which is served 

FCFS

• When it gains CPU, job receives 8 
milliseconds

• If it does not finish in 8 milliseconds, 
job is moved to queue Q1

– At Q1 job is again served FCFS and receives 
16 additional milliseconds

• If it still does not complete, it is 
preempted and moved to queue Q2

Upgrading may be based on aging. Periodically processes may be moved to the top level.

Variations of the scheme were used in earlier versions of Linux.  
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Completely fair scheduler Linux 2.6.23 

Goal: fairness in dividing processor time to tasks (Con Kolivas, Anaesthetist) 
• Variable time-slice based on number and priority of the tasks in 

the queue.
– Maximum execution time based on waiting processes (Q/n). 
– Fewer processes waiting, they get more time each

• Queue ordered in terms of “virtual run time”
• execution time on CPU added to value

– smallest value picked for using CPU
– small values: tasks have received less time on CPU
– I/O bound tasks (shorter CPU bursts) will have smaller values

• Balanced (red-black) tree to implement a ready queue; 
– Efficient. O(log n) insert or delete time

• Priorities (niceness) cause different decays of values: higher 
priority processes get to run for longer time
– virtual run time is the weighted run-time

Scheduling schemes have continued to evolve with continuing research. A comparison.

https://web.archive.org/web/20070419102054/http:/kerneltrap.org/node/8059
https://www.cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
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Real-Time CPU Scheduling

• Can present obvious challenges
– Soft real-time systems – no guarantee as to when critical 

real-time process will be scheduled
– Hard real-time systems – task must be serviced by its 

deadline

• For real-time scheduling, scheduler must support 
preemptive, priority-based scheduling
– But only guarantees soft real-time

• For hard real-time must also provide ability to 
meet deadlines
– periodic ones require CPU at constant intervals

 
RTOS: real-time OS.  QNX in automotive, FreeRTOS etc.
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Virtualization and Scheduling

• Virtualization software schedules multiple 
guests OSs onto CPU(s)

• Each guest doing its own scheduling

– Not knowing it doesn’t own the CPUs

– Can affect time-of-day clocks in guests

• Virtual Machine Monitor has its own scheduler

• Various approaches have been used

– Workload aware, Guest OS cooperation, etc.
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Algorithm Evaluation

• How to select CPU-scheduling algorithm for an OS?

• Determine criteria, then evaluate algorithms

• Deterministic modeling

– Type of analytic evaluation

– Takes a particular predetermined workload and defines the 

performance of each algorithm  for that workload

• Consider 5 processes arriving at time 0:
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Deterministic Evaluation

• For each algorithm, calculate minimum average waiting time

• Simple and fast, but requires exact numbers for input, applies only 
to those inputs

– FCS is 28ms:

– Non-preemptive SFJ is 13ms:

– RR is 23ms:
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Probabilitistic Models

• Assume that the arrival of processes, and CPU 

and I/O bursts are random

– Repeat deterministic evaluation for many random 

cases and then average

• Approaches:

– Analytical: Queuing models 

– Simulation: simulate using realistic assumptions
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Queueing Models

• Describes the arrival of processes, and CPU 
and I/O bursts probabilistically mathematically

– Commonly exponential, and described by mean

– Computes average throughput, utilization, waiting 

time, etc

• Computer system described as network of 

servers, each with queue of waiting 
processes

– Knowing arrival rates and service rates

– Computes utilization, average queue length, 

average wait time, etc

Queueing Theory
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Little’s Formula for av Queue Length 

• Little’s law – in steady state, processes 
leaving queue must equal processes arriving, 
thus: 
– n = average queue length

– W = average waiting time in queue

– λ = average arrival rate into queue

      n = λ x W

– Valid for any scheduling algorithm and arrival 
distribution

• Example: average 7 processes arrive per sec, 
and 14 processes in queue, 
– then average wait time per process W= n/λ = 14/7= 

2 sec

Each process takes 1/ λ time to move one position. 
Beginning to end delay W = n(1/λ)
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Simulations

• Queueing models limited

• Simulations more versatile

– Programmed model of computer system

– Clock is a variable

– Gather statistics  indicating algorithm performance

– Data to drive simulation gathered via

• Random number generator according to probabilities

• Distributions defined mathematically or empirically

• Trace tapes record sequences of real events in real systems

– Illustration

https://staff.um.edu.mt/jskl1/simweb/sq1/sq1.html
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Evaluation of CPU Schedulers by Simulation

Simulation using real data
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Actual Implementation

Even simulations have limited accuracy

Just implement new scheduler and test in real systems

High cost, high risk

Environments vary

Considerations

Most flexible schedulers can be modified per-site or per-

system

Or APIs to modify priorities

Environments can vary



18 18

Colorado State University
Yashwant K Malaiya

Synchronization

CS370 Operating Systems

Slides based on 
• Text by Silberschatz, Galvin, Gagne
• Various sources



19 19

Process Synchronization: Objectives

Concept of process synchronization.

The critical-section problem, whose solutions 

can be used to ensure the consistency of shared 

data

Software and hardware solutions of the critical-

section problem

Classical process-synchronization problems

Tools that are used to solve process 

synchronization problems
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Process Synchronization

EW Dijkstra Go To Statement Considered Harmful

https://stackoverflow.com/questions/46586/goto-still-considered-harmful
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Process Synchronization

Overview

• We synchronization is needed

• Critical section: access controlled to permit just one 
process

– How the critical section be implemented

– Mutex locks and semaphores

• Classic synchronization problems

• Will a solution cause a deadlock?
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Too Much Milk Example

Person A Person B

12:30 Look in fridge.  Out of milk.

12:35 Leave for store. Look in fridge.  Out of milk.

12:40 Arrive at store. Leave for store

12:45 Buy milk. Arrive at store.

12:50 Arrive home, put milk away. Buy milk

12:55 Arrive home, put milk away.
Oh no!
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Background

• Processes can execute concurrently
– May be interrupted at any time, partially completing 

execution

• Concurrent access to shared data may result in data 
inconsistency

• Maintaining data consistency requires mechanisms to 
ensure the orderly execution of cooperating processes

• Illustration: we wanted to provide a solution to the 
consumer-producer problem that fills all the buffers. 
– have an integer counter that keeps track of the number of 

full buffers.  
– Initially, counter is set to 0. 
– It is incremented by the producer after it produces a new 

buffer 
– decremented by the consumer after it consumes a buffer.
Will it work without any problems?
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Consumer-producer problem 

Producer
while (true) {

 /* produce an item*/ 

  while (counter == BUFFER_SIZE) ; 

  /* do nothing */ 

  buffer[in] = next_produced; 

  in = (in + 1) % BUFFER_SIZE; 

 counter++; 

} 

Consumer
while (true) {

  while (counter == 0); 

        /* do nothing */ 

   next_consumed = buffer[out]; 

   out = (out + 1) % BUFFER_SIZ 

   counter--; 

 /* consume the item in 

        next consumed */ 

} 

24

They run “concurrently” (or in parallel), and are subject to context switches 
at unpredictable times. 

In, out: indices of empty and filled items in the buffer.
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Race Condition

They run concurrently, and are subject to context switches at unpredictable times. 

Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter         {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6}
S2: consumer execute register2 = counter        {register2 = 5} 
S3: consumer execute register2 = register2 – 1  {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2        {counter = 4}

counter++ could be compiled as

   register1 = counter

   register1 = register1 + 1

   counter = register1

counter-- could be compiled as

   register2 = counter

   register2 = register2 - 1

   counter = register2

Overwrites!
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Critical Section Problem

We saw race condition between counter ++ and counter –

Solution to the “race condition” problem: critical section
• Consider system of n processes {p0, p1, … pn-1}
• Each process has critical section segment of code

– Process may be changing common variables, updating table, writing 
file, etc

– When one process in critical section, no other may be in its critical 
section

• Critical section problem is to design protocol to solve this
• Each process must ask permission to enter critical section in 

entry section, may follow critical section with exit section, 
then remainder section follows.

Race condition: when outcome depends on timing/order that is not predictable
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Process Synchronization: Outline

Critical-section problem to ensure the consistency of 

shared data

Software and hardware solutions of the critical-section 

problem

Peterson’s solution

Atomic instructions

Mutex locks and semaphores

Classical process-synchronization problems

Bounded buffer, Readers Writers, Dining Philosophers

Another approach: Monitors
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General structure: Critical section 

do { 

  

  entry section

  critical section 

  exit section

  

        remainder section

 

  } while (true); 

Request permission 
to enter

Housekeeping to let 
other processes to 

enter

A process is prohibited from entering the critical section while another 
process is in it. 
Multiple processes are trying to enter the critical section concurrently by 
executing the same code.
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Solution to Critical-Section Problem
A good solution to the critical-section problem should have these 

attributes

1. Mutual Exclusion - If process Pi is executing in its critical 
section, then no other processes can be executing in their 
critical sections

2. Progress - If no process is executing in its critical section and 
there exist some processes that wish to enter their critical 
section, then the selection of the processes that will enter 
the critical section next cannot be postponed indefinitely

3. Bounded Waiting -  A bound must exist on the number of 
times that other processes are allowed to enter their critical 
sections after a process has made a request to enter its 
critical section and before that request is granted

 Assume that each process executes at a nonzero speed 
 No assumption concerning relative speed of the n processes
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Peterson’s Solution

• Good algorithmic  description of solving the problem
• Two process solution only
• Assume that the load and store machine-language 

instructions are atomic; that is, cannot be interrupted
• The two processes share two variables:

– int turn; 

– Boolean flag[2]

– The variable turn indicates whose turn it is to enter the 
critical section

– The flag array is used to indicate if a process is ready to 
enter the critical section. flag[i] = true  implies that 
process Pi is ready to enter!
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Algorithm for Process Pi

do { 

  flag[i] = true; 

  turn = j; 

  while (flag[j] && turn = = j);  /*Wait*/

   critical section 

  flag[i] = false; 

   remainder section 

  } while (true); 

• The variable turn indicates whose turn it is to enter the critical 
section

• The flag array is used to indicate if a process is ready to enter the 
critical section. flag[i] = true  implies that process Pi is ready!

• Note: Entry section- Critical section-Exist section
• These algorithms assume 2 or more processes are trying to get in the 

critical section.

Being 
nice!

For process  Pi, 
Pj runs the same code 

concurrently
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Peterson’s Solution (Cont.)

Provable that the three  CS requirement are met:
      1.   Mutual exclusion is preserved
             Pi enters CS only if:
              either flag[j] = false or turn = i
      2.   Progress requirement is satisfied
  If a process wants to enter, it only has to wait until the other finishes.

      3.   Bounded-waiting requirement is met. 
  A process waits only one turn.

Detailed proof in the text.

Note: there exists a generalization of Peterson’s solution for more than 2 processes, but bounded waiting is 
not assured. May not work in multiple processor systems, turn may be modified by by both processors.
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Synchronization: Hardware Support

• Modern systems provide hardware support 
for implementing the critical section code.

• All solutions below based on idea of locking
– Protecting critical regions via locks

• Modern machines provide special atomic 
hardware instructions

• Atomic = non-interruptible

– test memory word and set value

– swap contents of two memory words

– Other
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Solution 1:  using test_and_set()

• Shared Boolean variable lock, initialized to FALSE
• Solution:
       do {
          while (test_and_set(&lock)) ; /* do nothing */

 

                 /* critical section */ 

     …..

          lock = false; 

                 /* remainder section */ 

         …  ..

       } while (true); 

               

To break out:
Return value of 
TestAndSet should be 

FALSE

If two TestAndSet() are attempted simultaneously, they 
will be executed sequentially in some arbitrary order 

Lock TRUE: locked,   Lock FALSE: not locked.   Lock is a shared variable.
test_and_set(&lock) returns the lock value and then sets it to True.
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test_and_set(&lock)

Process 0 Process 1Lock

test_and_set(&lock)

Critical section

lock = false

test_and_set(&lock)

Busy waiting

test_and_set(&lock)

Critical section

lock = false

Locked by Process 0

Locked by Process 1

Shared variable lock is initially FALSE

while (test_and_set(&lock)) ; /* do nothing */

 

                 /* critical section */ 

     …..

          lock = false; 

                 /* remainder section */ 
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Solution 2: Swap: Hardware implementation

Another way of sensing/setting the lock (next slide).

Background: Remember this C code? 

void Swap(boolean *a, boolean *b ) { 
boolean temp = *a; 

*a = *b; 

*b = temp; 

}
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Using Swap (concurrently executed by both)

do { 
key = TRUE;
while (key == TRUE) { 

Swap(&lock, &key)       
}

critical section

lock = FALSE;

remainder section

} while (TRUE); 

Lock is a SHARED variable.  
Key is a variable local to the process. 

Lock == false when no process is in 
critical section.

Cannot enter critical section UNLESS 
lock == FALSE by other process or initially

If two Swap() are executed 
simultaneously, they will be executed 
sequentially in some arbitrary order
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Swap()

Process 0 Process 1Lock
Key = TRUE
Swap (  )  
Key ==FALSE, enter

Critical section

Lock  = FALSE

Key = TRUE
Swap (  )
Key == TRUE, wait

Busy waiting

Swap (  ),  Key ==False

Critical section

Lock  = FALSE

Locked by Process 0

Locked by Process 1

Lock = FALSE 

Lock = TRUE 

Note: I created this to visualize the mechanism. It is not in the book. - Yashwant
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Bounded-waiting Mutual Exclusion with test_and_set

For process i: 

do {

   waiting[i] = true;

   key = true;

   while (waiting[i] && key) 

      key = test_and_set(&lock); 

   waiting[i] = false; 

   /* critical section */ 

   j = (i + 1) % n; 

   while ((j != i) && !waiting[j]) 

      j = (j + 1) % n; 

   if (j == i) 

      lock = false; 

   else 

      waiting[j] = false; 

   /* remainder section */ 

} while (true); 

Shared Data structures initialized to FALSE 

• boolean waiting[n]; Pr n wants to enter

• boolean lock; 

The entry section for process i : 

• First process to execute TestAndSet will find key == 
false ; ENTER critical section, 

• EVERYONE else must wait 

The exit section for process i: 

Attempts to finding a suitable waiting process j (while 
loop) and enable it, 

or if there is no suitable process, make lock FALSE.
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Bounded-waiting Mutual Exclusion with test_and_set

The previous algorithm satisfies the three requirements

• Mutual Exclusion:  The first process to execute TestAndSet(lock) 
when lock is false, will set lock to true so no other process can 
enter the CS.

• Progress: When a process i exits the CS, it either sets lock to 
false, or waiting[i] to false (allowing j to get in) , allowing the 
next process to proceed.

• Bounded Waiting: When a process exits the CS, it examines all 
the other processes in the waiting array in a circular order.  Any 
process waiting for CS will have to wait at most n-1 turns
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Mutex Locks

Previous solutions are complicated and generally 
inaccessible to application programmers

OS designers build software tools to solve critical 
section problem

Simplest is mutex lock

Protect a critical section  by first acquire() a lock 
then release() the lock

Boolean variable indicating if lock is available or not

Calls to acquire() and release() must be atomic
Usually implemented via hardware atomic instructions

But this solution requires busy waiting
This lock therefore called a spinlock
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acquire() and release()

•Usage

  do { 

    acquire lock

       critical section

    release lock 

      remainder section 

 } while (true); 

acquire() {

       while (!available) 

        ; /* busy wait */

release() { 

       available = true; 

    } 
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acquire() and release()

Process 0 Process 1Lock

Start acquire, get lock

Critical section

Release lock

Start acquire

Busy waiting

Gets lock

Critical section

Release lock

Locked by Process 0

Locked by Process 1
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How are locks supported by hardware?

• Atomic read-modify-write

• Atomic instructions in x86
– LOCK instruction prefix, which applies to an instruction does a 

read-modify-write on memory (INC, XCHG, CMPXCHG etc)

– Ex: lock cmpxchg  <dest>, <source>

• In RISK processors? Instruction-pairs

– LL (Load Linked Word), SC (Store Conditional Word) instructions in MIPS

– LDREX, STREX in ARM

– Creates an atomic sequence
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