
1 1

Colorado State University
Yashwant K Malaiya

Fall 2024 L10
Scheduling, Synchronization

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Tracking SRTF and RR

• Shortest remaining time first (Preemptive SJF)
– Need to track the remaining time for all processes

• Round Robin
– Need to track the position of the processes in the Ready

Queue

– Also need to track the remaining time needed

– Illustration on youtube

– Animation CPU Scheduling Algorithm Visualization

• Time quantum- How to decide?
– Rule of thumb: 80% of CPU bursts should be shorter than q

Disclaimer: I have not verified the accuracy of the on-line sources.

https://www.youtube.com/watch?v=3N2t9_6Co3U
https://codepen.io/faso/pen/zqWGQW

3

Project

• See Schedule/Proj Proposal or Canvas/Assignments

• Choices: Research (topics provided) or development (IoT). Some

research/original thinking required for either.

• Deadlines: subject to revision.

– D1. Team composition and idea proposal, 9/24/24

– D2. Progress report, 10/31/24

– D3. Slides and final reports, 11/20/24

– D4. Presentations/demos 12/2-12/5 as arranged

– D5: Peer Reviews due 12/6/24

• Teams: 2-3 students (see Teams channel “Project
Teams”).

4

Multilevel Queue Scheduling

Real-time processes may have the highest priority.

5

Multilevel Feedback Queue

• A process can move between the various queues;
aging can be implemented this way

• Multilevel-feedback-queue scheduler defined by
the following parameters:
– number of queues

– scheduling algorithms for each queue

– method used to determine when to upgrade a process

– method used to determine when to demote a process

– method used to determine which queue a process will
enter when that process needs service

– Details at ARPACI-DUSSEAU

Inventor FJ Corbató won the Touring award!

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

6

Example of Multilevel Feedback Queue

• Three queues:
– Q0 – RR with time quantum 8 milliseconds

– Q1 – RR time quantum 16 milliseconds

– Q2 – FCFS (no time quantum limit)

• Scheduling
– A new job enters queue Q0 which is served

FCFS

• When it gains CPU, job receives 8
milliseconds

• If it does not finish in 8 milliseconds,
job is moved to queue Q1

– At Q1 job is again served FCFS and receives
16 additional milliseconds

• If it still does not complete, it is
preempted and moved to queue Q2

Upgrading may be based on aging. Periodically processes may be moved to the top level.

Variations of the scheme were used in earlier versions of Linux.

7

Completely fair scheduler Linux 2.6.23

Goal: fairness in dividing processor time to tasks (Con Kolivas, Anaesthetist)
• Variable time-slice based on number and priority of the tasks in

the queue.
– Maximum execution time based on waiting processes (Q/n).
– Fewer processes waiting, they get more time each

• Queue ordered in terms of “virtual run time”
• execution time on CPU added to value

– smallest value picked for using CPU
– small values: tasks have received less time on CPU
– I/O bound tasks (shorter CPU bursts) will have smaller values

• Balanced (red-black) tree to implement a ready queue;
– Efficient. O(log n) insert or delete time

• Priorities (niceness) cause different decays of values: higher
priority processes get to run for longer time
– virtual run time is the weighted run-time

Scheduling schemes have continued to evolve with continuing research. A comparison.

https://web.archive.org/web/20070419102054/http:/kerneltrap.org/node/8059
https://www.cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf

8

Real-Time CPU Scheduling

• Can present obvious challenges
– Soft real-time systems – no guarantee as to when critical

real-time process will be scheduled
– Hard real-time systems – task must be serviced by its

deadline

• For real-time scheduling, scheduler must support
preemptive, priority-based scheduling
– But only guarantees soft real-time

• For hard real-time must also provide ability to
meet deadlines
– periodic ones require CPU at constant intervals

RTOS: real-time OS. QNX in automotive, FreeRTOS etc.

9

Virtualization and Scheduling

• Virtualization software schedules multiple
guests OSs onto CPU(s)

• Each guest doing its own scheduling

– Not knowing it doesn’t own the CPUs

– Can affect time-of-day clocks in guests

• Virtual Machine Monitor has its own scheduler

• Various approaches have been used

– Workload aware, Guest OS cooperation, etc.

10

Algorithm Evaluation

• How to select CPU-scheduling algorithm for an OS?

• Determine criteria, then evaluate algorithms

• Deterministic modeling

– Type of analytic evaluation

– Takes a particular predetermined workload and defines the

performance of each algorithm for that workload

• Consider 5 processes arriving at time 0:

11

Deterministic Evaluation

• For each algorithm, calculate minimum average waiting time

• Simple and fast, but requires exact numbers for input, applies only
to those inputs

– FCS is 28ms:

– Non-preemptive SFJ is 13ms:

– RR is 23ms:

12

Probabilitistic Models

• Assume that the arrival of processes, and CPU

and I/O bursts are random

– Repeat deterministic evaluation for many random

cases and then average

• Approaches:

– Analytical: Queuing models

– Simulation: simulate using realistic assumptions

13

Queueing Models

• Describes the arrival of processes, and CPU
and I/O bursts probabilistically mathematically

– Commonly exponential, and described by mean

– Computes average throughput, utilization, waiting

time, etc

• Computer system described as network of

servers, each with queue of waiting
processes

– Knowing arrival rates and service rates

– Computes utilization, average queue length,

average wait time, etc

Queueing Theory

14

Little’s Formula for av Queue Length

• Little’s law – in steady state, processes
leaving queue must equal processes arriving,
thus:
– n = average queue length

– W = average waiting time in queue

– λ = average arrival rate into queue

 n = λ x W

– Valid for any scheduling algorithm and arrival
distribution

• Example: average 7 processes arrive per sec,
and 14 processes in queue,
– then average wait time per process W= n/λ = 14/7=

2 sec

Each process takes 1/ λ time to move one position.
Beginning to end delay W = n(1/λ)

15

Simulations

• Queueing models limited

• Simulations more versatile

– Programmed model of computer system

– Clock is a variable

– Gather statistics indicating algorithm performance

– Data to drive simulation gathered via

• Random number generator according to probabilities

• Distributions defined mathematically or empirically

• Trace tapes record sequences of real events in real systems

– Illustration

https://staff.um.edu.mt/jskl1/simweb/sq1/sq1.html

16

Evaluation of CPU Schedulers by Simulation

Simulation using real data

17

Actual Implementation

Even simulations have limited accuracy

Just implement new scheduler and test in real systems

High cost, high risk

Environments vary

Considerations

Most flexible schedulers can be modified per-site or per-

system

Or APIs to modify priorities

Environments can vary

18 18

Colorado State University
Yashwant K Malaiya

Synchronization

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

19 19

Process Synchronization: Objectives

Concept of process synchronization.

The critical-section problem, whose solutions

can be used to ensure the consistency of shared

data

Software and hardware solutions of the critical-

section problem

Classical process-synchronization problems

Tools that are used to solve process

synchronization problems

20

Process Synchronization

EW Dijkstra Go To Statement Considered Harmful

https://stackoverflow.com/questions/46586/goto-still-considered-harmful

21

Process Synchronization

Overview

• We synchronization is needed

• Critical section: access controlled to permit just one
process

– How the critical section be implemented

– Mutex locks and semaphores

• Classic synchronization problems

• Will a solution cause a deadlock?

22

Too Much Milk Example

Person A Person B

12:30 Look in fridge. Out of milk.

12:35 Leave for store. Look in fridge. Out of milk.

12:40 Arrive at store. Leave for store

12:45 Buy milk. Arrive at store.

12:50 Arrive home, put milk away. Buy milk

12:55 Arrive home, put milk away.
Oh no!

23

Background

• Processes can execute concurrently
– May be interrupted at any time, partially completing

execution

• Concurrent access to shared data may result in data
inconsistency

• Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

• Illustration: we wanted to provide a solution to the
consumer-producer problem that fills all the buffers.
– have an integer counter that keeps track of the number of

full buffers.
– Initially, counter is set to 0.
– It is incremented by the producer after it produces a new

buffer
– decremented by the consumer after it consumes a buffer.
Will it work without any problems?

24

Consumer-producer problem

Producer
while (true) {

 /* produce an item*/

 while (counter == BUFFER_SIZE) ;

 /* do nothing */

 buffer[in] = next_produced;

 in = (in + 1) % BUFFER_SIZE;

 counter++;

}

Consumer
while (true) {

 while (counter == 0);

 /* do nothing */

 next_consumed = buffer[out];

 out = (out + 1) % BUFFER_SIZ

 counter--;

 /* consume the item in

 next consumed */

}

24

They run “concurrently” (or in parallel), and are subject to context switches
at unpredictable times.

In, out: indices of empty and filled items in the buffer.

25

Race Condition

They run concurrently, and are subject to context switches at unpredictable times.

Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

counter++ could be compiled as

 register1 = counter

 register1 = register1 + 1

 counter = register1

counter-- could be compiled as

 register2 = counter

 register2 = register2 - 1

 counter = register2

Overwrites!

26

Critical Section Problem

We saw race condition between counter ++ and counter –

Solution to the “race condition” problem: critical section
• Consider system of n processes {p0, p1, … pn-1}
• Each process has critical section segment of code

– Process may be changing common variables, updating table, writing
file, etc

– When one process in critical section, no other may be in its critical
section

• Critical section problem is to design protocol to solve this
• Each process must ask permission to enter critical section in

entry section, may follow critical section with exit section,
then remainder section follows.

Race condition: when outcome depends on timing/order that is not predictable

27

Process Synchronization: Outline

Critical-section problem to ensure the consistency of

shared data

Software and hardware solutions of the critical-section

problem

Peterson’s solution

Atomic instructions

Mutex locks and semaphores

Classical process-synchronization problems

Bounded buffer, Readers Writers, Dining Philosophers

Another approach: Monitors

28

General structure: Critical section

do {

 entry section

 critical section

 exit section

 remainder section

 } while (true);

Request permission
to enter

Housekeeping to let
other processes to

enter

A process is prohibited from entering the critical section while another
process is in it.
Multiple processes are trying to enter the critical section concurrently by
executing the same code.

29

Solution to Critical-Section Problem
A good solution to the critical-section problem should have these

attributes

1. Mutual Exclusion - If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter
the critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its
critical section and before that request is granted

 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the n processes

31

Peterson’s Solution

• Good algorithmic description of solving the problem
• Two process solution only
• Assume that the load and store machine-language

instructions are atomic; that is, cannot be interrupted
• The two processes share two variables:

– int turn;

– Boolean flag[2]

– The variable turn indicates whose turn it is to enter the
critical section

– The flag array is used to indicate if a process is ready to
enter the critical section. flag[i] = true implies that
process Pi is ready to enter!

32

Algorithm for Process Pi

do {

 flag[i] = true;

 turn = j;

 while (flag[j] && turn = = j); /*Wait*/

 critical section

 flag[i] = false;

 remainder section

 } while (true);

• The variable turn indicates whose turn it is to enter the critical
section

• The flag array is used to indicate if a process is ready to enter the
critical section. flag[i] = true implies that process Pi is ready!

• Note: Entry section- Critical section-Exist section
• These algorithms assume 2 or more processes are trying to get in the

critical section.

Being
nice!

For process Pi,
Pj runs the same code

concurrently

33

Peterson’s Solution (Cont.)

Provable that the three CS requirement are met:
 1. Mutual exclusion is preserved
 Pi enters CS only if:
 either flag[j] = false or turn = i
 2. Progress requirement is satisfied
 If a process wants to enter, it only has to wait until the other finishes.

 3. Bounded-waiting requirement is met.
 A process waits only one turn.

Detailed proof in the text.

Note: there exists a generalization of Peterson’s solution for more than 2 processes, but bounded waiting is
not assured. May not work in multiple processor systems, turn may be modified by by both processors.

34

Synchronization: Hardware Support

• Modern systems provide hardware support
for implementing the critical section code.

• All solutions below based on idea of locking
– Protecting critical regions via locks

• Modern machines provide special atomic
hardware instructions

• Atomic = non-interruptible

– test memory word and set value

– swap contents of two memory words

– Other

35

Solution 1: using test_and_set()

• Shared Boolean variable lock, initialized to FALSE
• Solution:
 do {
 while (test_and_set(&lock)) ; /* do nothing */

 /* critical section */

 …..

 lock = false;

 /* remainder section */

 … ..

 } while (true);

To break out:
Return value of
TestAndSet should be

FALSE

If two TestAndSet() are attempted simultaneously, they
will be executed sequentially in some arbitrary order

Lock TRUE: locked, Lock FALSE: not locked. Lock is a shared variable.
test_and_set(&lock) returns the lock value and then sets it to True.

36

test_and_set(&lock)

Process 0 Process 1Lock

test_and_set(&lock)

Critical section

lock = false

test_and_set(&lock)

Busy waiting

test_and_set(&lock)

Critical section

lock = false

Locked by Process 0

Locked by Process 1

Shared variable lock is initially FALSE

while (test_and_set(&lock)) ; /* do nothing */

 /* critical section */

 …..

 lock = false;

 /* remainder section */

37

Solution 2: Swap: Hardware implementation

Another way of sensing/setting the lock (next slide).

Background: Remember this C code?

void Swap(boolean *a, boolean *b) {
boolean temp = *a;

*a = *b;

*b = temp;

}

38

Using Swap (concurrently executed by both)

do {
key = TRUE;
while (key == TRUE) {

Swap(&lock, &key)
}

critical section

lock = FALSE;

remainder section

} while (TRUE);

Lock is a SHARED variable.
Key is a variable local to the process.

Lock == false when no process is in
critical section.

Cannot enter critical section UNLESS
lock == FALSE by other process or initially

If two Swap() are executed
simultaneously, they will be executed
sequentially in some arbitrary order

39

Swap()

Process 0 Process 1Lock
Key = TRUE
Swap ()
Key ==FALSE, enter

Critical section

Lock = FALSE

Key = TRUE
Swap ()
Key == TRUE, wait

Busy waiting

Swap (), Key ==False

Critical section

Lock = FALSE

Locked by Process 0

Locked by Process 1

Lock = FALSE

Lock = TRUE

Note: I created this to visualize the mechanism. It is not in the book. - Yashwant

40

Bounded-waiting Mutual Exclusion with test_and_set

For process i:

do {

 waiting[i] = true;

 key = true;

 while (waiting[i] && key)

 key = test_and_set(&lock);

 waiting[i] = false;

 /* critical section */

 j = (i + 1) % n;

 while ((j != i) && !waiting[j])

 j = (j + 1) % n;

 if (j == i)

 lock = false;

 else

 waiting[j] = false;

 /* remainder section */

} while (true);

Shared Data structures initialized to FALSE

• boolean waiting[n]; Pr n wants to enter

• boolean lock;

The entry section for process i :

• First process to execute TestAndSet will find key ==
false ; ENTER critical section,

• EVERYONE else must wait

The exit section for process i:

Attempts to finding a suitable waiting process j (while
loop) and enable it,

or if there is no suitable process, make lock FALSE.

41

Bounded-waiting Mutual Exclusion with test_and_set

The previous algorithm satisfies the three requirements

• Mutual Exclusion: The first process to execute TestAndSet(lock)
when lock is false, will set lock to true so no other process can
enter the CS.

• Progress: When a process i exits the CS, it either sets lock to
false, or waiting[i] to false (allowing j to get in) , allowing the
next process to proceed.

• Bounded Waiting: When a process exits the CS, it examines all
the other processes in the waiting array in a circular order. Any
process waiting for CS will have to wait at most n-1 turns

43

Mutex Locks

Previous solutions are complicated and generally
inaccessible to application programmers

OS designers build software tools to solve critical
section problem

Simplest is mutex lock

Protect a critical section by first acquire() a lock
then release() the lock

Boolean variable indicating if lock is available or not

Calls to acquire() and release() must be atomic
Usually implemented via hardware atomic instructions

But this solution requires busy waiting
This lock therefore called a spinlock

44

acquire() and release()

•Usage

 do {

 acquire lock

 critical section

 release lock

 remainder section

 } while (true);

acquire() {

 while (!available)

 ; /* busy wait */

release() {

 available = true;

 }

45

acquire() and release()

Process 0 Process 1Lock

Start acquire, get lock

Critical section

Release lock

Start acquire

Busy waiting

Gets lock

Critical section

Release lock

Locked by Process 0

Locked by Process 1

47

How are locks supported by hardware?

• Atomic read-modify-write

• Atomic instructions in x86
– LOCK instruction prefix, which applies to an instruction does a

read-modify-write on memory (INC, XCHG, CMPXCHG etc)

– Ex: lock cmpxchg <dest>, <source>

• In RISK processors? Instruction-pairs

– LL (Load Linked Word), SC (Store Conditional Word) instructions in MIPS

– LDREX, STREX in ARM

– Creates an atomic sequence

	Slide 1
	Slide 2: Tracking SRTF and RR
	Slide 3: Project
	Slide 4: Multilevel Queue Scheduling
	Slide 5: Multilevel Feedback Queue
	Slide 6: Example of Multilevel Feedback Queue
	Slide 7: Completely fair scheduler Linux 2.6.23
	Slide 8: Real-Time CPU Scheduling
	Slide 9: Virtualization and Scheduling
	Slide 10: Algorithm Evaluation
	Slide 11: Deterministic Evaluation
	Slide 12: Probabilitistic Models
	Slide 13: Queueing Models
	Slide 14: Little’s Formula for av Queue Length
	Slide 15: Simulations
	Slide 16: Evaluation of CPU Schedulers by Simulation
	Slide 17: Actual Implementation
	Slide 18
	Slide 19
	Slide 20: Process Synchronization
	Slide 21: Process Synchronization
	Slide 22: Too Much Milk Example
	Slide 23: Background
	Slide 24: Consumer-producer problem
	Slide 25: Race Condition
	Slide 26: Critical Section Problem
	Slide 27: Process Synchronization: Outline
	Slide 28: General structure: Critical section
	Slide 29: Solution to Critical-Section Problem
	Slide 31: Peterson’s Solution
	Slide 32: Algorithm for Process Pi
	Slide 33: Peterson’s Solution (Cont.)
	Slide 34: Synchronization: Hardware Support
	Slide 35: Solution 1: using test_and_set()
	Slide 36: test_and_set(&lock)
	Slide 37: Solution 2: Swap: Hardware implementation
	Slide 38: Using Swap (concurrently executed by both)
	Slide 39: Swap()
	Slide 40: Bounded-waiting Mutual Exclusion with test_and_set
	Slide 41: Bounded-waiting Mutual Exclusion with test_and_set
	Slide 43: Mutex Locks
	Slide 44: acquire() and release()
	Slide 45: acquire() and release()
	Slide 47: How are locks supported by hardware?

