
1 1

Colorado State University
Yashwant K Malaiya
Fall 2024 Lecture 9

Scheduling

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Forms of Parallelism

– Pipelining: instruction flows though multiple levels

– Multiple issue: Instruction level Parallelism (ILP)

• Multiple instructions fetched at the same time

• Static: compiler scheduling of instructions

• Dynamic: hardware assisted scheduling of operations

– “Superscalar” processors

– CPU decides whether to issue 0, 1, 2, … instructions
each cycle

– Thread or task level parallelism (TLP)

• Multiple processes or threads running at the same time

3

Chapter 5: CPU Scheduling

• Basic Concepts

• Scheduling Criteria

• Scheduling Algorithms

• Thread Scheduling

• Multiple-Processor Scheduling

• Real-Time CPU Scheduling

• Operating Systems Examples

• Algorithm Evaluation

4

Diagram of Process State

Ready to Running: scheduled by scheduler
Running to Ready: scheduler picks another process, back in ready queue
Running to Waiting (Blocked) : process blocks for input/output
Waiting to Ready: Input available

5

Basic Concepts

• Maximum CPU
utilization obtained
with multiprogramming

• CPU–I/O Burst Cycle –
Process execution
consists of a cycle of
CPU execution and I/O
wait

• CPU burst followed by
I/O burst

• CPU burst distribution
is of main concern

6

Histogram of CPU-burst Times

Typical distribution of CPU bursts. Most CPU bursts are just a few ms.

7

CPU Scheduler

Short-term scheduler selects from among the processes
in ready queue, and allocates the CPU to one of them

Queue may be ordered in various ways

CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

Scheduling under 1 and 4 is nonpreemptive
All other scheduling is preemptive. These need to be
considered

access to shared data by multiple processes
preemption while in kernel mode
interrupts occurring during crucial OS activities

Not
Controlled by
the process

8

Dispatcher

• Dispatcher module gives control of the
CPU to the process selected by the short-
term scheduler; this involves:

– switching context

– switching to user mode

– jumping to the proper location in the user
program to restart that program

• Dispatch latency – time it takes for the
dispatcher to stop one process and start
another running

9

The Dispatcher (dentist’s office)

10

Scheduling Criteria

• CPU utilization – keep the CPU as busy as
possible: Maximize

• Throughput – # of processes that complete their
execution per time unit: Maximize

• Turnaround time –time to execute a process
from submission to completion: Minimize

• Waiting time – amount of time a process has
been waiting in the ready queue: Minimize

• Response time –time it takes from when a
request was submitted until the first response is
produced, not output (for time-sharing
environment): Minimize

11

Terms for a single process

UCLA

12

Scheduling Algorithms

We will now examine several major scheduling
approaches

• Decide which process in the ready queue is
allocated the CPU

• Could be preemptive or nonpreemptive

– preemptive: remove in middle of execution
(“forced”)

• Optimize measure of interest

– We will use Gantt charts to illustrate schedules

– Bar chart with start and finish times for processes

Involuntary
deboarding!

https://www.youtube.com/watch?v=VrDWY6C1178

13

Non-preemptive vs Preemptive scheduling

• Non-preemptive: Process keeps CPU until it
relinquishes it when

– It terminates

– It switches to the waiting state

– Used by initial versions of OSs like Windows 3.x

• Preemptive scheduling
– Pick a process and let it run for a maximum of some

fixed time

– If it is still running at the end of time interval

• Suspend it and pick another process to run

• A clock interrupt at the end of the time interval
to give control back of CPU back to scheduler

14

Scheduling Algorithms

Basic algorithms

• First- Come, First-Served (FCFS)

• Shortest-Job-First (SJF)
– Shortest-remaining-time-first

• Priority Scheduling

• Round Robin (RR) with time quantum

Advanced algorithms

• Multilevel Queue
– Multilevel Feedback Queue

• “Completely fair”

Comparing Performance

• Average waiting time etc.
Some simplifying assumptions used for clarity.

15

First- Come, First-Served (FCFS) Scheduling

• Process requesting CPU first, gets it first

• Managed with a FIFO queue

– When process enters ready queue
• PCB is tacked to the tail of the queue

– When CPU is free
• It is allocated to process at the head of the queue

• Simple to write and understand

16

First- Come, First-Served (FCFS) Scheduling

 Process Burst Time
 P1 24
 P2 3
 P3 3

• Suppose that the processes arrive in the order: P1 , P2 ,
P3 but almost the same time.
The Gantt Chart for the schedule is:

• Waiting time for P1 = ; P2 = ; P3 =
• Average waiting time: (+ +)/ =
• Throughput: / = per unit time

P P P
1 2 3

0 24 3027

Henry Gantt,
1910s

Pause for students to do the computation

17

First- Come, First-Served (FCFS) Scheduling

 Process Burst Time
 P1 24
 P2 3
 P3 3

• Suppose that the processes arrive in the order: P1 , P2 ,
P3 but almost the same time.
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17
• Throughput: 3/ 30 = 0.1 per unit time

P P P
1 2 3

0 24 3027

Henry Gantt,
1910s

18

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
 P2 , P3 , P1
• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3
• Average waiting time: (6 + 0 + 3)/3 = 3

– Much better than previous case
• But note -Throughput: 3/30 = 0.1 per unit same

• Convoy effect - short processes behind a long process
– Consider one CPU-bound and many I/O-bound processes

P
1

0 3 6 30

P
2

P
3

19

Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its next
CPU burst
– Use these lengths to schedule the process with the

shortest time

• Reduction in waiting time for short process
GREATER THAN Increase in waiting time for long
process

• SJF is optimal – gives minimum average waiting
time for a given set of processes
– The difficulty is knowing the length of the next CPU

request

– Estimate or could ask the user

20

Example of SJF
 ProcessArriva l TimeBurst Time

 P1 0.0 6
 P2 2.0 8
 P3 4.0 7
 P4 5.0 3

• All arrive at time 0.
• SJF scheduling chart: Draw it here.

• Average waiting time for P1,P2,P3,P4 = (+ + +) / =

Pause for students to do the computation

21

Example of SJF
 ProcessArriva l TimeBurst Time

 P1 0.0 6
 P2 2.0 8
 P3 4.0 7
 P4 5.0 3

• All arrive at time 0.
• SJF scheduling chart

• Average waiting time for P1,P2,P3,P4 = (3 + 16 + 9 + 0) / 4 = 7

P
3

0 3 24

P
4

P
1

169

P
2

22

Determining Length of Next CPU Burst

• Can only estimate the length – should be similar to
the recent bursts
– Then pick process with shortest predicted next CPU burst

• Can be done by using the length of previous CPU
bursts, using exponential averaging

• Commonly, α set to ½

: Define4.

10 , 3.

burst CPUnext for the valuepredicted 2.

burst CPU of length actual 1.

1



=

=

+



 n

th

n nt

() .1 1 nnn t  −+=+

23

Prediction of the Length of the Next CPU Burst

Blue line: guess
Red line: actual

α = 0.5

Ex:
0.5x6 +0.5x10 = 8

24

Examples of Exponential Averaging

•  =0
– n+1 = n
– Recent history does not count

•  =1
– n+1 =  tn

– Only the actual last CPU burst counts
•
• If we expand the formula, substituting for n , we

get:
n+1 =  tn+(1 - ) tn -1 + …
 +(1 - )j  tn -j + …
 +(1 - )n +1 0

• Since both  and (1 - ) are less than or equal to
1, each successive term has less weight than its
predecessor

Widely used for
predicting stock-

market etc

() .1 1 nnn t  −+=+

25

Shortest-remaining-time-first (preemptive SJF)

• Now we add the concepts of varying arrival times and
preemption to the analysis

 ProcessAarri Arrival TimeT Burst Time
 P1 0 8
 P2 1 4 (will preempt because 4<7)

 P3 2 9 (will not preempt)

 P4 3 5
• Preemptive SJF Gantt Chart

• Average waiting time for P1,P2,P3,P4
 = [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5 msec

P
4

0 1 26

P
1

P
2

10

P
3

P
1

5 17

• Preemptive version called shortest-remaining-time-first

26

Priority Scheduling
• A priority number (integer) is associated with each

process

• The CPU is allocated to the process with the highest
priority (smallest integer  highest priority)
– Preemptive
– Nonpreemptive

• SJF is priority scheduling where priority is the inverse of
predicted next CPU burst time

• Problem  Starvation – low priority processes may
never execute

– Solution  Aging – as time progresses increase the priority of
the process

MIT had a low priority job waiting from 1967 to 1973 on IBM 7094! ☺

27

Ex Priority Scheduling non-preemptive

 ProcessA arri Burst TimeT Priority
 P1 10 3
 P2 1 1 (highest)

 P3 2 4
 P4 1 5
 P5 5 2

• P1,P2, P3, P4,P5 all arrive at time 0.
• Priority scheduling Gantt Chart

• Average waiting time for P1, .. P5: (6+0+16+18+1)/5 = 8.2 msec

Variation: Priority scheduling with preemption

28

Round Robin (RR) with time quantum

• Each process gets a small unit of CPU time (time quantum
q), usually 10-100 milliseconds. After this, the process is
preempted, added to the end of the ready queue.

• If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time
in chunks of at most q time units at once. No process
waits more than (n-1)q time units.

• Timer interrupts every quantum to schedule next process
• Performance

– q large  FIFO
– q small  q must be large with respect to context switch,

otherwise overhead is too high (overhead typically in 0.5%
range)

29

Example of RR with Time Quantum = 4

 Process Burst Time
 P1 24
 P2 3
 P3 3
• Arrive a time 0 in order P1, P2, P3: The Gantt chart is:

• Waiting times: P1:10-4 =6, P2:4, P3:7, average 17/3 = 5.66
units

• Typically, higher average turnaround than SJF, but better
response

• q should be large compared to context switch time
• q usually 10ms to 100ms, context switch < 10 µsec

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

Response time: Arrival to beginning of execution
Turnaround time: Arrival to finish of execution

30

RR: different arrival times

Process at the head of the Ready Queue is scheduled
first. You must track the Ready Queue.

• When a process is switched out, it gets into the Ready
Queue.

• When a new process arrives, it gets into the Ready
Queue.

• When a process A gets switched out and a new process
B arrives at the same time, which one gets into the
Ready Queue first?

– Assume the new process is placed first in the ready queue.

31

Time Quantum and Context Switch Time

Much smaller quantum compared to burst: many switches

32

Turnaround Time Varies With The Time Quantum

Students: Repeat for q = 1, ..6 at home to verify the plot.

Rule of thumb: 80% of CPU bursts

should be shorter than q

Illustration
Consider q=7:

P1,P2,P3,P4: all arrive at time 0 in this

order.

Turnaround times for P1,P2,P3,P4:

6,9,10,17 av = 10.5
Similarly for q =1, ..6 (verify yourself)

Turnaround time: Arrival to finish of execution

33

Multilevel Queue

• Ready queue is partitioned into separate queues,
e.g.:
– foreground (interactive)
– background (batch)

• Process permanently in a given queue
• Each queue has its own scheduling algorithm, e.g.:

– foreground – RR
– background – FCFS

• Scheduling must be done between the queues:
– Fixed priority scheduling; (i.e., serve all from foreground

then from background). Possibility of starvation. Or
– Time slice – each queue gets a certain amount of CPU

time which it can schedule amongst its processes; i.e.,
80% to foreground in RR, 20% to background in FCFS

34

Multilevel Queue Scheduling

Real-time processes may have the highest priority.

35

Multilevel Feedback Queue

• A process can move between the various queues;
aging can be implemented this way

• Multilevel-feedback-queue scheduler defined by
the following parameters:
– number of queues

– scheduling algorithms for each queue

– method used to determine when to upgrade a process

– method used to determine when to demote a process

– method used to determine which queue a process will
enter when that process needs service

– Details at ARPACI-DUSSEAU

Inventor FJ Corbató won the Touring award!

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

36

Example of Multilevel Feedback Queue

• Three queues:
– Q0 – RR with time quantum 8 milliseconds

– Q1 – RR time quantum 16 milliseconds

– Q2 – FCFS (no time quantum limit)

• Scheduling
– A new job enters queue Q0 which is served

FCFS

• When it gains CPU, job receives 8
milliseconds

• If it does not finish in 8 milliseconds,
job is moved to queue Q1

– At Q1 job is again served FCFS and receives
16 additional milliseconds

• If it still does not complete, it is
preempted and moved to queue Q2

Upgrading may be based on aging. Periodically processes may be moved to the top level.

Variations of the scheme were used in earlier versions of Linux.

37

Completely fair scheduler Linux 2.6.23

Goal: fairness in dividing processor time to tasks (Con Kolivas, Anaesthetist)
• Variable time-slice based on number and priority of the tasks in

the queue.
– Maximum execution time based on waiting processes (Q/n).
– Fewer processes waiting, they get more time each

• Queue ordered in terms of “virtual run time”
• execution time on CPU added to value

– smallest value picked for using CPU
– small values: tasks have received less time on CPU
– I/O bound tasks (shorter CPU bursts) will have smaller values

• Balanced (red-black) tree to implement a ready queue;
– Efficient. O(log n) insert or delete time

• Priorities (niceness) cause different decays of values: higher
priority processes get to run for longer time
– virtual run time is the weighted run-time

Scheduling schemes have continued to evolve with continuing research. A comparison.

https://web.archive.org/web/20070419102054/http:/kerneltrap.org/node/8059
https://www.cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf

	Slide 1
	Slide 2: Forms of Parallelism
	Slide 3: Chapter 5: CPU Scheduling
	Slide 4: Diagram of Process State
	Slide 5: Basic Concepts
	Slide 6: Histogram of CPU-burst Times
	Slide 7: CPU Scheduler
	Slide 8: Dispatcher
	Slide 9: The Dispatcher (dentist’s office)
	Slide 10: Scheduling Criteria
	Slide 11: Terms for a single process
	Slide 12: Scheduling Algorithms
	Slide 13: Non-preemptive vs Preemptive scheduling
	Slide 14: Scheduling Algorithms
	Slide 15: First- Come, First-Served (FCFS) Scheduling
	Slide 16: First- Come, First-Served (FCFS) Scheduling
	Slide 17: First- Come, First-Served (FCFS) Scheduling
	Slide 18: FCFS Scheduling (Cont.)
	Slide 19: Shortest-Job-First (SJF) Scheduling
	Slide 20: Example of SJF
	Slide 21: Example of SJF
	Slide 22: Determining Length of Next CPU Burst
	Slide 23: Prediction of the Length of the Next CPU Burst
	Slide 24: Examples of Exponential Averaging
	Slide 25: Shortest-remaining-time-first (preemptive SJF)
	Slide 26: Priority Scheduling
	Slide 27: Ex Priority Scheduling non-preemptive
	Slide 28: Round Robin (RR) with time quantum
	Slide 29: Example of RR with Time Quantum = 4
	Slide 30: RR: different arrival times
	Slide 31: Time Quantum and Context Switch Time
	Slide 32: Turnaround Time Varies With The Time Quantum
	Slide 33: Multilevel Queue
	Slide 34: Multilevel Queue Scheduling
	Slide 35: Multilevel Feedback Queue
	Slide 36: Example of Multilevel Feedback Queue
	Slide 37: Completely fair scheduler Linux 2.6.23

