
1 1

Colorado State University
Yashwant K Malaiya

Fall 2024 Lecture 8 Threads

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Today

• Threads

• Amdahl’s law

• Kernel support for threads

• Pthreads

• Java Threads

• Implicit threading

3

UNIX pipe example

Parent Process:

 #define READ_END 0

 #define WRITE_END 1

 int fd[2];

 create the pipe:

 if (pipe(fd) == -1) {

 fprintf(stderr,"Pipe failed");

 return 1;

 fork a child process:

 pid = fork();

 parent process:

 close(fd[READ_END]); /* close the unused end of the pipe */

 write(fd[WRITE_END], write_msg, strlen(write_msg)+1); /* write to the pipe */

 close(fd[WRITE_END]); /* close the write end of the pipe */

child process:

 close(fd[WRITE_END]); /* close the unused end of the pipe */

 read(fd[READ_END], read_msg, BUFFER_SIZE); /* read from the pipe */

 printf("child read %s\n",read_msg);

 close(fd[READ_END]); /* close the write end of the pipe */

Direction of flow
Parent to child

Synchronization not considered here to keep illustration simple.

4 4

Colorado State University
Yashwant K Malaiya

Threads

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

5 5

Chapter 4: Threads

Objectives:
• Thread—basis of multithreaded systems

• APIs for the Pthreads and Java thread libraries

• implicit threading, multithreaded programming

• OS support for threads

6

Concurrency vs. Parallelism

Concurrent execution on single-core system:

Parallelism on a multi-core system:

7

Amdahl’s Law: Multicore systems

Identifies performance gains from adding additional cores to an
application that has both serial and parallel components.

• S is serial portion (as a fraction) that cannot be broken into
parallel operations.

• Some things can possibly be done in parallel.

• N processing cores

• Example: if application is 75% parallel / 25% serial, moving from
1 to 2 cores results in speedup of

 1/(0.25+ 0.75/2) = 1.6 times

• As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

8

Amdahls law: ordinary life example

• Amdahls law: ordinary life example.

 Which of the two option is faster?

– Person A cooks, person B eats and then Person C
eats.

– Person A cooks, then both person B and person C
eat at the same time.

A

B

C

A

B C

9

User Threads and Kernel Threads

• User threads - management done

by user-level threads library

• Three main thread libraries:

– POSIX Pthreads

– Windows threads

– Java threads

• Kernel threads - Supported by the

Kernel

– Examples – virtually all general-purpose

operating systems, including:

• Windows

• Linux

• Mac OS X

10

Multithreading Models

How do kernel threads support user process

threads?

• Many-to-One: Many user-level threads mapped to

single kernel thread (thread library in user space

older model)

• One-to-One: (now common)

• Many-to-Many: Allows many user level threads to

be mapped to smaller or equal number of kernel

threads (older systems)

11

Many-to-One

• Many user-level threads mapped
to single kernel thread (thread
library in user space older model)

• One thread blocking causes all
to block

• Multiple threads may not run in
parallel on muticore system
because only one may be in
kernel at a time

• Few systems currently use this
model

• Examples:
– Solaris Green Threads for Java

1996

– GNU Portable Threads 2006

12

One-to-One

• Each user-level thread maps to kernel
thread

• Creating a user-level thread creates a
kernel thread

• More concurrency than many-to-one

• Number of threads per process
sometimes restricted due to overhead

• Examples
– Windows

– Linux

– Solaris 9 and later

13

Many-to-Many Model

• Allows many user level
threads to be mapped to
smaller or equal number
of kernel threads

• Allows the operating
system to create a
sufficient number of kernel
threads

• Solaris prior to version 9
2002-3

• Windows with the
ThreadFiber package NT/2000

14

Two-level Model

• Similar to M:M, except that it allows a

user thread to be bound to a kernel

thread

• Examples

– IRIX -2006

– HP-UX

– Tru64 UNIX

– Solaris 8 and earlier

15

Thread Libraries

• Thread library provides programmer

with API for creating and managing

threads

• Two primary ways of implementing

– Library entirely in user space

– Kernel-level library supported by the OS

16

POSIX Pthreads

• May be provided either as user-level or
kernel-level

• A POSIX standard (IEEE 1003.1c) API for

thread creation and synchronization 1991

• Specification, not implementation

• API specifies behavior of the thread library,
implementation is up to development of the

library

• Common in UNIX operating systems
(Solaris, Linux, Mac OS X)

17

Some Pthread management functions

POSIX function Description

pthread_cancel Terminate a thread

pthread_create Create a thread

pthread_detach Set thread to release resources

pthread_exit Exit a thread without exiting process

pthread_kill Send a signal to a thread

pthread_join Wait for a thread

pthread_self Find out own thread ID

• Return 0 if successful

18

POSIX: Thread creation pthread_create()

• Automatically makes the thread runnable without a
start operation

• Takes 3 parameters:

– Points to ID of newly created thread

– Attributes for the thread

– Stack size, scheduling information, etc.

– Name of function that the thread calls when it begins
execution with argument

/* create the thread */

pthread_create(&tid, &attr, runner, argv[1]);

19

POSIX: Detaching and Joining

• pthread_detach()
– Sets internal options to specify that storage for thread can

be reclaimed when it exits

– 1 parameter: Thread ID of the thread to detach

– Undetached threads don’t release resources until
• Another thread calls pthread_join for them

• Or the whole process exits

• pthread_join
– Takes ID of the thread to wait for

– Suspends calling thread till target terminates

– Similar to waitpid at the process level

pthread_join(tid, NULL);

20

POSIX: Exiting and cancellation

• If a process calls exit, all threads terminate

• Call to pthread_exit causes only the calling thread to
terminate

pthread_exit(0)

• Threads can force other threads to return through a
cancellation mechanism

– pthread_cancel (): takes thread ID of target

– Actual cancellation depends on type and state of thread

21

Pthreads Example (next 2 slides)

• This process will have two threads

– Initial/main thread to execute the main () function. It
crates a new thread and waits for it to finish.

– A new thread that runs function runner ()
• It will get a parameter, an integer, and will compute the sum of all

integers from 1 to that number.

• New thread leaves the result in a global variable sum.

– The main thread prints the result.

22

Pthreads Example Pt 1
#include <pthread.h>

#include <stdio.h>

int sum; /* this global data is shared by the thread(s) */

void *runner(void *param); /* the thread */

int main(int argc, char *argv[])

{

pthread_t tid; /* the thread identifier */

pthread_attr_t attr; /* set of attributes for the thread */

if (argc != 2) {

 fprintf(stderr,"usage: a.out <integer value>\n");

 /*exit(1);*/

 return -1;

}

if (atoi(argv[1]) < 0) {

 fprintf(stderr,"Argument %d must be non-negative\n",atoi(argv[1]));

 /*exit(1);*/

 return -1;

}

thread runner will
perform summation
of integers 1,2, ..n

23

Pthreads Example Pt 2
/* get the default attributes */

pthread_attr_init(&attr);

/* create the thread */

pthread_create(&tid, &attr, runner, argv[1]);

/* now wait for the thread to exit */

pthread_join(tid, NULL);

printf("sum = %d\n", sum);

}

/* The thread will begin control in this function */

void *runner(void *param)

{

int i, upper = atoi(param);

sum = 0;

 if (upper > 0) {

 for (i = 1; i <= upper; i++)

 sum += i;

 }

 pthread_exit(0);

}

Compile using
gcc thrd.c –lpthread

Execution:
%./thrd 4
sum = 10

<- Second thread begins in runner () function

24

Pthreads Code for Multiple Threads

/* create the threads */
for (i = 0; i < NUM_THREADS; i++)
 pthread_create(&tid[i], &attr, runner, NULL);

/* now join on each thread */
for (i = 0; i < NUM_THREADS; i++)
 pthread_join(tid[i], NULL);
}
/* Each thread will begin control in this function */

void *runner(void *param)
{
 /* do some work ... */
pthread_exit(0);
}

25

Java Threads

• Java threads are managed by the JVM

• Typically implemented using the threads model
provided by underlying OS

• Java threads may be created by:
– Extending Thread class

• Override its run() method

– More commonly, implementing the Runnable
interface

1. Has 1 method run()

2. Create new Thread class by passing a Runnable
object to its constructor

3. start() method creates a new thread by calling
the run() method.

 - new features available in java.util.concurrent package

Runnable interface is defined by

26

Java Thread States

https://www.javatpoint.com/life-cycle-of-a-thread

https://www.javatpoint.com/life-cycle-of-a-thread

27

Ex: Using Java Threads (1/3)

Java version of a multithreaded program that computes summation of a non-negative
integer.
This program creates a separate thread by implementing the Runnable interface.

class Sum
{

 private int sum;

 public int get() {
 return sum;
 }

 public void set(int sum) {

 this.sum = sum;
 }
}

Program Overall Structure
class sum
{ }
class summation implements runnable
{ …
 public void run() { .. }
}
Public class Driver
 { …..
 public static void main(String[] args) {

 Thread worker = new Thread(new summation(…
 worker.start();
 try {
 worker.join(); ….
 }

28

Ex: Using Java Threads (2/3)
class Summation implements Runnable

{

 private int upper;

 private Sum sumValue;

//constructor
 public Summation(int upper, Sum sumValue) {

 if (upper < 0)

 throw new IllegalArgumentException();

 this.upper = upper;

 this.sumValue = sumValue;

 }

//this method runs as a separate thread

 public void run() {

 int sum = 0;

 for (int i = 0; i <= upper; i++)

 sum += i;

 sumValue.set(sum);

 }

}

29

Ex: Using Java Threads (3/3)
public class Driver

{

 public static void main(String[] args) {

 if (args.length != 1) {

 System.err.println("Usage Driver <integer>");

 System.exit(0);

 }

 Sum sumObject = new Sum();

 int upper = Integer.parseInt(args[0]);

 Thread worker = new Thread(new Summation(upper, sumObject));

 worker.start();

 try {

 worker.join();

 } catch (InterruptedException ie) { }

 System.out.println("The sum of " + upper + " is " + sumObject.get());

 }

}

A call to
run()

30

Implicit Threading

• Growing in popularity as numbers of threads increase,

program correctness more difficult with explicit threads

• Creation and management of threads done by compilers

and run-time libraries rather than programmers

• Three methods explored

– Thread Pools

– OpenMP

– Grand Central Dispatch

• Other methods include Microsoft Threading Building
Blocks (TBB), java.util.concurrent package

31

Implicit Threading1: Thread Pools

• Create a number of threads in a pool where they await

work

• Advantages:

– Usually slightly faster to service a request with an

existing thread than create a new thread

– Allows the number of threads in the application(s) to be

bound to the size of the pool

– Separating task to be performed from mechanics of

creating task allows different strategies for running task

• i.e.Tasks could be scheduled to run periodically

• Posix thread pools

• Windows API supports thread pools.

32

Implicit Threading2: OpenMP

• Set of compiler directives and an

API for C, C++, FORTRAN

• Provides support for parallel

programming in shared-memory

environments

• Identifies parallel regions –

blocks of code that can run in

parallel

#pragma omp parallel

Create as many threads as there are

cores

#pragma omp parallel for

for(i=0;i<N;i++) {

c[i] = a[i] + b[i];

}

Run for loop in parallel

Compile using
gcc -fopenmp openmp.c

Self exercise 3, 4 available now.

33

Implicit Threading3:Grand Central Dispatch

• Apple technology for Mac OS X and iOS
operating systems

• Extensions to C, C++ languages, API, and
run-time library

• Allows identification of parallel sections

• Manages most of the details of threading

• Block is in “^{ }”

 - ˆ{ printf("I am a block"); }

• Blocks placed in dispatch queue
– Assigned to available thread in thread pool when

removed from queue

34

Threading Issues

• Semantics of fork() and exec() system

calls

• Signal handling

– Synchronous and asynchronous

• Thread cancellation of target thread

– Asynchronous or deferred

• Thread-local storage

35

Semantics of fork() and exec()

• Does fork()duplicate only the

calling thread or all threads?

– Some UNIXes have two versions of fork

– 1. when exec() will replace the entire

process, dup just that thread

– 2. duplicate all threads

• exec() usually works as normal –

replace the running process including

all threads

36

Signal Handling

• Signals are used in UNIX systems to notify a
process that a particular event has occurred.

• A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:

1. default

2. user-defined

• Every signal has default handler that kernel
runs when handling signal

– User-defined signal handler can override default

– For single-threaded, signal delivered to process

37

Signal Handling (Cont.)

• Where should a signal be delivered for
multi-threaded process?

– Deliver the signal to the thread to which the
signal applies?

– Deliver the signal to every thread in the
process?

– Deliver the signal to certain threads in the
process?

– Assign a specific thread to receive all signals
for the process? common

38

Thread Cancellation

• Terminating a thread before it has finished

• Thread to be canceled is target thread

• Two general approaches:

– Asynchronous cancellation terminates the target

thread immediately

– Deferred cancellation allows the target thread to

periodically check if it should be cancelled

• Pthread code to create and cancel a thread:

pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS, NULL);

39

Thread Cancellation (Cont.)

Invoking thread cancellation requests cancellation, but
actual cancellation depends on thread state

A thread’s cancelation type (mode) and state can be set.
If thread has cancellation disabled, cancellation remains
pending until thread enables it
Default type is deferred

Cancellation only occurs when thread reaches cancellation
point
 I.e. pthread_testcancel()
Then cleanup handler is invoked

On Linux systems, thread cancellation is handled through
signals

40

Thread-Local Storage

Thread-local storage (TLS) allows each thread
to have its own copy of data

• Useful when you do not have control over the
thread creation process (i.e., when using a
thread pool)
– Ex: Each transaction has a thread and a transaction

identifier is needed.

• Different from local variables
– Local variables visible only during single function

invocation

– TLS visible across function invocations

• Similar to static data
– TLS is unique to each thread

41

Is complexity always good?

• Is something that is

– More advanced

– More complex

 Generally better?

42

Hyper-threading

“Hyper-threading”: “simultaneous multithreading”:
– Hardware support for multiple threads in the same core

(CPU)

• Performance:
– performance improvements are very application-

dependent

– Higher energy consumption ARM 2006

– Not better than out-of-order execution Intel 2013

– Intel has dropped it in some chips Core i7-9700K 2018 8 cores, 8 threads, Core i-9 10900K 2020 10

cores, 20 threads

– Can cause security issues. Sometimes disabled by default.

– May be enabled/disabled using firmware

43

Forms of Parallelism

– Pipelining: instruction flows though multiple levels

– Multiple issue: Instruction level Parallelism (ILP)

• Multiple instructions fetched at the same time

• Static: compiler scheduling of instructions

• Dynamic: hardware assisted scheduling of operations

– “Superscalar” processors

– CPU decides whether to issue 0, 1, 2, … instructions
each cycle

– Thread or task level parallelism (TLP)

• Multiple processes or threads running at the same time

44

Chapter 5: CPU Scheduling

• Basic Concepts

• Scheduling Criteria

• Scheduling Algorithms

• Thread Scheduling

• Multiple-Processor Scheduling

• Real-Time CPU Scheduling

• Operating Systems Examples

• Algorithm Evaluation

45

Diagram of Process State

Ready to Running: scheduled by scheduler
Running to Ready: scheduler picks another process, back in ready queue
Running to Waiting (Blocked) : process blocks for input/output
Waiting to Ready: Input available

	Slide 1
	Slide 2: Today
	Slide 3: UNIX pipe example
	Slide 4
	Slide 5
	Slide 6: Concurrency vs. Parallelism
	Slide 7: Amdahl’s Law: Multicore systems
	Slide 8: Amdahls law: ordinary life example
	Slide 9: User Threads and Kernel Threads
	Slide 10: Multithreading Models
	Slide 11: Many-to-One
	Slide 12: One-to-One
	Slide 13: Many-to-Many Model
	Slide 14: Two-level Model
	Slide 15: Thread Libraries
	Slide 16: POSIX Pthreads
	Slide 17: Some Pthread management functions
	Slide 18: POSIX: Thread creation pthread_create()
	Slide 19: POSIX: Detaching and Joining
	Slide 20: POSIX: Exiting and cancellation
	Slide 21: Pthreads Example (next 2 slides)
	Slide 22: Pthreads Example Pt 1
	Slide 23: Pthreads Example Pt 2
	Slide 24: Pthreads Code for Multiple Threads
	Slide 25: Java Threads
	Slide 26: Java Thread States
	Slide 27: Ex: Using Java Threads (1/3)
	Slide 28: Ex: Using Java Threads (2/3)
	Slide 29: Ex: Using Java Threads (3/3)
	Slide 30: Implicit Threading
	Slide 31: Implicit Threading1: Thread Pools
	Slide 32: Implicit Threading2: OpenMP
	Slide 33: Implicit Threading3:Grand Central Dispatch
	Slide 34: Threading Issues
	Slide 35: Semantics of fork() and exec()
	Slide 36: Signal Handling
	Slide 37: Signal Handling (Cont.)
	Slide 38: Thread Cancellation
	Slide 39: Thread Cancellation (Cont.)
	Slide 40: Thread-Local Storage
	Slide 41: Is complexity always good?
	Slide 42: Hyper-threading
	Slide 43: Forms of Parallelism
	Slide 44: Chapter 5: CPU Scheduling
	Slide 45: Diagram of Process State

