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We have seen
• When does the child process begin execution?  fork ( ). 

• What does fork( ) return?
– It returns the value 0 in the child process. Child’s  PID is not zero

– In the parent fork( ) returns the PID of the child. 
• Fork is not a branch or a function call like the ordinary programs you have worked with in the past. The 

child process is a separate process.

• getpid(), getppid( )

• rv = wait(&wstatus);
– Caller will block until the child exits or finishes.

– on success, returns PID of the terminated child; on error, -1 is returned.

– Status in wstatus variable, extracted using WEXITSTATUS(wstatus)

• Self exercise 3: Examine, compile and and run programs.
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• Use of Laptops, phones and other devices are not permitted.

• Exception: only with the required pledge that you will

– Must have a reason for request

– use it only for class related note taking, which must be submitted on 
1st and 15th of each month to retain permission.

– not distract others, turn off wireless, last row

• Laptop use lowers student grades, experiment shows, Screens also distract laptop-
free classmates

• The Case for Banning Laptops in the Classroom

• Laptop multitasking hinders classroom learning for both users and nearby 
peers

Electronic devices in lecture room 

http://www.cbc.ca/news/technology/laptop-use-lowers-student-grades-experiment-shows-1.1401860
http://www.cbc.ca/news/technology/laptop-use-lowers-student-grades-experiment-shows-1.1401860
https://www.newyorker.com/tech/elements/the-case-for-banning-laptops-in-the-classroom
https://www.sciencedirect.com/science/article/pii/S0360131512002254
https://www.sciencedirect.com/science/article/pii/S0360131512002254
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Forking PIDs
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int main(){
                       pid_t cid;

 /* fork a child process */
cid = fork();
if (cid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed\n");
 return 1;
 }
 else if (cid == 0) { /* child process */
 printf("I am the child %d, my PID is %d\n", cid, getpid());
 execlp("/bin/ls","ls",NULL);
 }
 else { /* parent process */
           /* parent will wait for the child to complete */
           printf("I am the parent with PID %d, my parent is %d, my child is %d\n",getpid(), getppid(), cid);
           wait(NULL);
  
           printf("Child Complete\n");
 }
    
    return 0;
}

Parent and the child processes
run concurrently.
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Interprocess Communication –  Shared Memory

• Each process has its own private address 
space.

• An area of memory shared among the 
processes that wish to communicate

• The communication is under the control of 
the user processes, not the operating system.

• Major issue is to provide mechanism that will 
allow the user processes to synchronize their 
actions when they access shared memory. 
– Synchronization is discussed in great details in a 

later Chapter.

• POSIX Example soon.

Only one process 
may access 

shared memory 

at a time
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Interprocess Communication – Message Passing

• Mechanism for processes to communicate 
and to synchronize their actions

• Message system – processes communicate 
with each other without resorting to shared 
variables

• IPC facility provides two operations:
– send(message)

– receive(message)

• The message size is either fixed or variable
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Message Passing (Cont.)

• Implementation of communication link
– Physical:

• Shared memory

• Hardware bus

• Network

– Logical: Options (details next)
•  Direct (process to process) or indirect (mail box)

•  Synchronous (blocking) or asynchronous (non-blocking)

•  Automatic or explicit buffering
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Direct Communication

• Processes must name each other explicitly:
– send (P, message) – send a message to process P

– receive(Q, message) – receive a message from 
process Q

• Properties of communication link
– Links are established automatically

– A link is associated with exactly one pair of 
communicating processes

– Between each pair there exists exactly one link

– The link may be unidirectional, but is usually bi-
directional
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Indirect Communication

• Messages are directed and received from 
mailboxes (also referred to as ports)
– Each mailbox has a unique id

– Processes can communicate only if they share a mailbox

• Properties of communication link
– Link established only if processes share a common 

mailbox

– A link may be associated with many processes

– Each pair of processes may share several communication 
links

– Link may be unidirectional or bi-directional
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Indirect Communication

• Operations

– create a new mailbox (port)

– send and receive messages through mailbox

– destroy a mailbox

• Primitives are defined as:

 send(A, message) – send a message to mailbox A

 receive(A, message) – receive a message from 
mailbox A
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Indirect Communication

• Mailbox sharing

– P1, P2, and P3 share mailbox A

– P1, sends; P2 and P3 receive

– Who gets the message?

• Possible Solutions

– Allow a link to be associated with at most two 
processes

– Allow only one process at a time to execute a 
receive operation

– Allow the system to select arbitrarily the receiver.  
Sender is notified who the receiver was.
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Synchronization( blocking or not)

• Message passing may be either blocking or non-
blocking

• Blocking is termed synchronous
– Blocking send -- sender is blocked until message is received

– Blocking receive -- receiver is  blocked until a message is 
available

• Non-blocking is termed asynchronous
– Non-blocking send -- sender sends message and continues

– Non-blocking receive -- the receiver receives:
 A valid message,  or 

 Null message

Different combinations possible
If both send and receive are blocking, we have a rendezvous.

Producer-Consumer problem: Easy if both block
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Examples of IPC Systems

OSs support many different forms of IPC*. We will look at 
two of them

• Shared Memory

• Pipes

* Linux kernel supports:  Signals, Anonymous Pipes, Named Pipes or FIFOs, 
SysV Message Queues, POSIX Message Queues, SysV Shared memory, POSIX 
Shared memory, SysV semaphores, POSIX semaphores, FUTEX locks, File-
backed and anonymous shared memory using mmap, UNIX Domain Sockets, 
Netlink Sockets, Network Sockets, Inotify mechanisms, FUSE subsystem, D-Bus 
subsystem
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Ex. POSIX Shared Memory (1)

▪ Older scheme (System V) us3d shmget(), shmat(), shmdt(), shmctl()
▪ POSIX Shared Memory

• First process first creates shared memory segment
shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

• Returns file descriptor (int)

• Identified by name (string)

• Also used to open an existing segment to share it 

• Set the size of the object

 ftruncate(shm_fd, 4096); 

• map the shared memory segment in the address space of the process 

 ptr = mmap(0,SIZE, PROT_READ | PROT_WRITE,

              MAP_SHARED, shm_fd, 0);

• Now the process could write to the shared memory
 sprintf(ptr, "Writing to shared memory");
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Ex. POSIX Shared memory (2)

▪ POSIX Shared Memory
• Other process opens shared memory object name
shm_fd = shm_open(name, O_RDONLY, 0666);

• Returns file descriptor (int) which identifies the file

• map the shared memory object

 ptr = mmap(0,SIZE, PROT_READ, MAP_SHARED,

          shm_fd, 0);

• Now the process can read from to the shared memory object

•  printf(“%s”, (char *)ptr);

• remove the shared memory object

     shm_unlink(name);

Please remember to unlink,  name persists in OS. 
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IPC POSIX Producer

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <fcntl.h> 
#include <sys/shm.h> 
#include <sys/stat.h> 
  
int main() 
{ 
    /* the size (in bytes) of shared memory object */
    const int SIZE = 4096; 
  
    /* name of the shared memory object */
    const char* name = "OS"; 
  
    /* strings written to shared memory */
    const char* message_0 = "Hello"; 
    const char* message_1 = "World!"; 
  
    /* shared memory file descriptor */
    int shm_fd; 
  
    /* pointer to shared memory object */
    char* ptr; 
  
    /* create the shared memory object */
    shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666); 
  
    /* configure the size of the shared memory object */
    ftruncate(shm_fd, SIZE); 
  
    /* memory map the shared memory object */
    ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm_fd, 0); 
  
    /* write to the shared memory object */
    sprintf(ptr, "%s", message_0); 
  
    ptr += strlen(message_0); 
    sprintf(ptr, "%s", message1); 
    ptr += strlen(message_1); 
    return 0;

See Self Exercises
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IPC POSIX Producer (details)
 /* create the shared memory segment */
 shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

 /* configure the size of the shared memory segment */
 ftruncate(shm_fd,SIZE);

 /* now map the shared memory segment in the address space of the process */
 ptr = mmap(0,SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0);
 if (ptr == MAP_FAILED) {
  printf("Map failed\n");
  return -1;
 }

 /**
  * Now write to the shared memory region.
  *
  * Note we must increment the value of ptr after each write.
  */
 sprintf(ptr,"%s",message0);
 ptr += strlen(message0);
 sprintf(ptr,"%s",message1);
 ptr += strlen(message1);
 sprintf(ptr,"%s",message2);
 ptr += strlen(message2);

 return 0;
}

File descriptor  FD: int that uniquely 
identifies a file.
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IPC POSIX Consumer
#include <stdio.h> 
#include <stdlib.h> 
#include <fcntl.h> 
#include <sys/shm.h> 
#include <sys/stat.h> 
  
int main() 
{ 
    /* the size (in bytes) of shared memory object */
    const int SIZE = 4096; 
  
    /* name of the shared memory object */
    const char* name = "OS"; 
  
    /* shared memory file descriptor */
    int shm_fd; 
  
    /* pointer to shared memory object */
    char *ptr; 
  
    /* open the shared memory object */
    shm_fd = shm_open(name, O_RDONLY, 0666); 
  
    /* memory map the shared memory object */
    ptr = mmap(0, SIZE, PROT_READ, MAP_SHARED, shm_fd, 0); 
  
    /* read from the shared memory object */
    printf("%s", (char*)ptr); 
  
    /* remove the shared memory object */
    shm_unlink(name); 
    return 0; 
} 
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IPC POSIX Consumer (details)
/* open the shared memory segment */
 shm_fd = shm_open(name, O_RDONLY, 0666);
 if (shm_fd == -1) {
  printf("shared memory failed\n");
  exit(-1);
 }

 /* now map the shared memory segment in the address space of the process 
*/
 ptr = mmap(0,SIZE, PROT_READ, MAP_SHARED, shm_fd, 0);
 if (ptr == MAP_FAILED) {
  printf("Map failed\n");
  exit(-1);
 }

 /* now read and print from the shared memory region */
 printf("%s",ptr);

 /* remove the shared memory segment */
 if (shm_unlink(name) == -1) {
  printf("Error removing %s\n",name);
  exit(-1);
 }

Bit mask created 
by ORing flags 

Mode

Memory 
protection

Flag
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Communications in Client-Server Systems

• Sockets

• Pipes

• Remote Procedure Calls

– Calling a function on another machine through 
the network.

• Remote Method Invocation (Java)

– Object oriented version of RPC



21

Socket Communication

• CS457 Computer 
Networks and the 
Internet

80: HTTP (well known)
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Pipes

Conduit allowing two processes to communicate

• Ordinary (“anonymous”) pipes –Typically, a parent 
process creates a pipe and uses it to communicate 
with a child process that it created. 
– Cannot be accessed  from outside the process that 

created it.

– Created using pipe( ) in Linux.

• Named pipes (“FIFO”) – can be accessed without a 
parent-child relationship. 
– Created using fifo( ) in Linux.
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Ordinary Pipes

Ordinary Pipes allow communication in standard producer-
consumer style
▪ Producer writes to one end (the write-end of the pipe)
▪ Consumer reads from the other end (the read-end of the 

pipe)
▪ Ordinary pipes are therefore unidirectional (half duplex)
▪ Require parent-child relationship between communicating 

processes
▪ pipe (int fd[]) to create pipe, fd[0] is the read-end, fd[1] is the 

write-end

▪ Windows calls these anonymous pipes
Arrows do not Show direction of transfer
Right: write-end for parent or child

For a process the file descriptors identify specific files.
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Ordinary Pipes

▪ Pipe is a special type of file. 

▪ Ends identified by file descriptors (FDs).

▪ Inherited by the child

▪ Flow: from Write End of P/C to Read End of C/P
▪ Must close unused portions of the the pipe

▪ Next example: Parent to child information flow
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UNIX pipe example  1/2 (parent)

#define READ_END 0
#define WRITE_END 1

                    int fd[2];

create the pipe:
 if (pipe(fd) == -1) {
  fprintf(stderr,"Pipe failed");
  return 1;
fork a child process:
 pid = fork();

parent process:
  /* close the unused end of the pipe */
  close(fd[READ_END]);

  /* write to the pipe */
  write(fd[WRITE_END], write_msg, strlen(write_msg)+1); 

  /* close the write end of the pipe */
  close(fd[WRITE_END]);

Child inherits 
the pipe

Direction of flow
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UNIX pipe example  2/2 (child)

child process:

  /* close the unused end of the pipe */

  close(fd[WRITE_END]);

  /* read from the pipe */

  read(fd[READ_END], read_msg, BUFFER_SIZE);

  printf("child read %s\n",read_msg);

  /* close the write end of the pipe */

  close(fd[READ_END]);

direction

See Self Exercises
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Named Pipes

• Named Pipes (termed FIFO) are more 
powerful than ordinary pipes

• Communication is bidirectional

• No parent-child relationship is necessary 
between the communicating processes

• Several processes can use the named pipe 
for communication

• Provided on both UNIX and Windows 
systems
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Chapter 4: Threads

Objectives:
• Thread—basis of multithreaded systems

• APIs for the Pthreads and Java thread libraries

• implicit threading, multithreaded programming

• OS support for threads
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Chapter 4: Threads

• Overview

• Multicore Programming

• Multithreading Models

• Thread Libraries

• Implicit Threading

• Threading Issues

• Operating System Examples
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Modern applications are multithreaded

• Most modern applications are multithreaded
– Became common with GUI

• Threads run within application

• Multiple tasks with the application can be 
implemented by separate threads
– Update display

– Fetch data

– Spell checking

– Answer a network request

• Process creation is heavy-weight while thread 
creation is light-weight

• Can simplify code, increase efficiency

• Kernels are generally multithreaded
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Multithreaded Server Architecture



33

Benefits

• Responsiveness – may allow continued execution 
if part of process is blocked, especially important for 
user interfaces

• Resource Sharing – threads share resources of 
process, easier than shared memory or message 
passing

• Economy – cheaper than process creation (10-100 
times), thread switching lower overhead than context 
switching

• Scalability – process can take advantage of 
multiprocessor architectures
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Multicore Programming

• Multicore or multiprocessor systems putting 
pressure on programmers, challenges include:
– Dividing activities

– Balance

– Data splitting

– Data dependency

– Testing and debugging

• Parallelism implies a system can perform more than 
one task simultaneously
– Extra hardware needed for parallel execution

• Concurrency supports more than one task making 
progress
– Single processor / core: scheduler providing concurrency
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Concurrency vs. Parallelism

n Concurrent execution on single-core system:

n Parallelism on a multi-core system:



36

Multicore Programming (Cont.)

• Types of parallelism 
– Data parallelism – distributes subsets of the same data 

across multiple cores, same operation on each

– Task parallelism – distributing threads across cores, 
each thread performing unique operation

• As # of threads grows, so does architectural 
support for threading
– CPUs have cores as well as hardware threads

• e.g. hyper-threading

– Oracle SPARC T4 with 8 cores, and 8 hardware threads per core 
(total 64 threads)

– AMD Ryzen 7 with 4 cores and 8 threads 
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Single and Multithreaded Processes
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Process vs Thread

• All threads in a process have same address 
space (text, data, open files, signals etc.), 
same global variables

• Each thread has its own
– Thread ID

– Program counter

– Registers

– Stack: execution trail, local variables

– State (running, ready, blocked, terminated)

• Thread is also a schedulable entity
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Amdahl’s Law

Gives speedup from adding additional cores to an application 
that has both serial and parallel components.

• S is serial portion (as a fraction) that cannot be broken into 
parallel operations.

• Some things can possibly be done in parallel.

• N processing cores

Example: if application is 75% parallel / 25% serial, moving from 1 
to 2 cores results in speedup of    

                  1/(0.25+ 0.75/2) = 1.6 times

• As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate  effect on 
performance gained by adding additional cores
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Amdahls law: ordinary life example

• Amdahls law: ordinary life example. 

 Which of the two option is faster?

– Person A cooks, person B eats and then Person C 
eats.

– Person A cooks, then both person B and person C 
eat at the same time.

A

B

C

A

B C
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User Threads and Kernel Threads

• User threads - management done by user-level 
threads library

• Three main thread libraries:

–  POSIX Pthreads

–  Windows threads

–  Java threads

• Kernel threads - Supported by the Kernel

– Examples – virtually all general-purpose operating 
systems, including:

• Windows 

• Linux

• Mac OS X
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Multithreading Models

How do kernel threads support user process 

threads?

• Many-to-One: Many user-level threads mapped to 

single kernel thread (thread library in user space 

older model)

• One-to-One:  (now common)

 

• Many-to-Many: Allows many user level threads to 

be mapped to smaller or equal number of kernel 

threads (older systems)
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Many-to-One

• Many user-level threads mapped 
to single kernel thread (thread 
library in user space older model)

• One thread blocking causes all 
to block

• Multiple threads may not run in 
parallel on muticore system 
because only one may be in 
kernel at a time

• Few systems currently use this 
model

• Examples:
– Solaris Green Threads for Java 

1996

– GNU Portable Threads 2006
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One-to-One

• Each user-level thread maps to kernel 
thread

• Creating a user-level thread creates a 
kernel thread

• More concurrency than many-to-one

• Number of threads per process 
sometimes restricted due to overhead

• Examples
– Windows

– Linux

– Solaris 9 and later
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Many-to-Many Model

• Allows many user level 
threads to be mapped to 
smaller or equal number 
of kernel threads

• Allows the  operating 
system to create a 
sufficient number of kernel 
threads

• Solaris prior to version 9 
2002-3

• Windows  with the 
ThreadFiber package NT/2000
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Two-level Model

• Similar to M:M, except that it allows a 

user thread to be bound to a kernel 

thread

• Examples

– IRIX -2006

– HP-UX

– Tru64 UNIX

– Solaris 8 and earlier
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Thread Libraries

• Thread library provides programmer 

with API for creating and managing 

threads

• Two primary ways of implementing

– Library entirely in user space

– Kernel-level library supported by the OS
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POSIX  Pthreads

• May be provided either as user-level or 
kernel-level

• A POSIX standard (IEEE 1003.1c) API for 

thread creation and synchronization 1991

• Specification, not implementation

• API specifies behavior of the thread library, 
implementation is up to development of the 

library

• Common in UNIX operating systems 
(Solaris, Linux, Mac OS X)
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