
1 1

Colorado State University
Yashwant K Malaiya
Fall 2024 Lecture 7

Processes

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

We have seen
• When does the child process begin execution? fork ().

• What does fork() return?
– It returns the value 0 in the child process. Child’s PID is not zero

– In the parent fork() returns the PID of the child.
• Fork is not a branch or a function call like the ordinary programs you have worked with in the past. The

child process is a separate process.

• getpid(), getppid()

• rv = wait(&wstatus);
– Caller will block until the child exits or finishes.

– on success, returns PID of the terminated child; on error, -1 is returned.

– Status in wstatus variable, extracted using WEXITSTATUS(wstatus)

• Self exercise 3: Examine, compile and and run programs.

3

• Use of Laptops, phones and other devices are not permitted.

• Exception: only with the required pledge that you will

– Must have a reason for request

– use it only for class related note taking, which must be submitted on
1st and 15th of each month to retain permission.

– not distract others, turn off wireless, last row

• Laptop use lowers student grades, experiment shows, Screens also distract laptop-
free classmates

• The Case for Banning Laptops in the Classroom

• Laptop multitasking hinders classroom learning for both users and nearby
peers

Electronic devices in lecture room

http://www.cbc.ca/news/technology/laptop-use-lowers-student-grades-experiment-shows-1.1401860
http://www.cbc.ca/news/technology/laptop-use-lowers-student-grades-experiment-shows-1.1401860
https://www.newyorker.com/tech/elements/the-case-for-banning-laptops-in-the-classroom
https://www.sciencedirect.com/science/article/pii/S0360131512002254
https://www.sciencedirect.com/science/article/pii/S0360131512002254

4

Forking PIDs
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int main(){
 pid_t cid;

 /* fork a child process */
cid = fork();
if (cid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed\n");
 return 1;
 }
 else if (cid == 0) { /* child process */
 printf("I am the child %d, my PID is %d\n", cid, getpid());
 execlp("/bin/ls","ls",NULL);
 }
 else { /* parent process */
 /* parent will wait for the child to complete */
 printf("I am the parent with PID %d, my parent is %d, my child is %d\n",getpid(), getppid(), cid);
 wait(NULL);

 printf("Child Complete\n");
 }

 return 0;
}

Parent and the child processes
run concurrently.

5

Interprocess Communication – Shared Memory

• Each process has its own private address
space.

• An area of memory shared among the
processes that wish to communicate

• The communication is under the control of
the user processes, not the operating system.

• Major issue is to provide mechanism that will
allow the user processes to synchronize their
actions when they access shared memory.
– Synchronization is discussed in great details in a

later Chapter.

• POSIX Example soon.

Only one process
may access

shared memory

at a time

6

Interprocess Communication – Message Passing

• Mechanism for processes to communicate
and to synchronize their actions

• Message system – processes communicate
with each other without resorting to shared
variables

• IPC facility provides two operations:
– send(message)

– receive(message)

• The message size is either fixed or variable

7

Message Passing (Cont.)

• Implementation of communication link
– Physical:

• Shared memory

• Hardware bus

• Network

– Logical: Options (details next)
• Direct (process to process) or indirect (mail box)

• Synchronous (blocking) or asynchronous (non-blocking)

• Automatic or explicit buffering

8

Direct Communication

• Processes must name each other explicitly:
– send (P, message) – send a message to process P

– receive(Q, message) – receive a message from
process Q

• Properties of communication link
– Links are established automatically

– A link is associated with exactly one pair of
communicating processes

– Between each pair there exists exactly one link

– The link may be unidirectional, but is usually bi-
directional

9

Indirect Communication

• Messages are directed and received from
mailboxes (also referred to as ports)
– Each mailbox has a unique id

– Processes can communicate only if they share a mailbox

• Properties of communication link
– Link established only if processes share a common

mailbox

– A link may be associated with many processes

– Each pair of processes may share several communication
links

– Link may be unidirectional or bi-directional

10

Indirect Communication

• Operations

– create a new mailbox (port)

– send and receive messages through mailbox

– destroy a mailbox

• Primitives are defined as:

 send(A, message) – send a message to mailbox A

 receive(A, message) – receive a message from
mailbox A

11

Indirect Communication

• Mailbox sharing

– P1, P2, and P3 share mailbox A

– P1, sends; P2 and P3 receive

– Who gets the message?

• Possible Solutions

– Allow a link to be associated with at most two
processes

– Allow only one process at a time to execute a
receive operation

– Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

12

Synchronization(blocking or not)

• Message passing may be either blocking or non-
blocking

• Blocking is termed synchronous
– Blocking send -- sender is blocked until message is received

– Blocking receive -- receiver is blocked until a message is
available

• Non-blocking is termed asynchronous
– Non-blocking send -- sender sends message and continues

– Non-blocking receive -- the receiver receives:
 A valid message, or

 Null message

Different combinations possible
If both send and receive are blocking, we have a rendezvous.

Producer-Consumer problem: Easy if both block

13

Examples of IPC Systems

OSs support many different forms of IPC*. We will look at
two of them

• Shared Memory

• Pipes

* Linux kernel supports: Signals, Anonymous Pipes, Named Pipes or FIFOs,
SysV Message Queues, POSIX Message Queues, SysV Shared memory, POSIX
Shared memory, SysV semaphores, POSIX semaphores, FUTEX locks, File-
backed and anonymous shared memory using mmap, UNIX Domain Sockets,
Netlink Sockets, Network Sockets, Inotify mechanisms, FUSE subsystem, D-Bus
subsystem

14

Ex. POSIX Shared Memory (1)

▪ Older scheme (System V) us3d shmget(), shmat(), shmdt(), shmctl()
▪ POSIX Shared Memory

• First process first creates shared memory segment
shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

• Returns file descriptor (int)

• Identified by name (string)

• Also used to open an existing segment to share it

• Set the size of the object

 ftruncate(shm_fd, 4096);

• map the shared memory segment in the address space of the process

 ptr = mmap(0,SIZE, PROT_READ | PROT_WRITE,

 MAP_SHARED, shm_fd, 0);

• Now the process could write to the shared memory
 sprintf(ptr, "Writing to shared memory");

15

Ex. POSIX Shared memory (2)

▪ POSIX Shared Memory
• Other process opens shared memory object name
shm_fd = shm_open(name, O_RDONLY, 0666);

• Returns file descriptor (int) which identifies the file

• map the shared memory object

 ptr = mmap(0,SIZE, PROT_READ, MAP_SHARED,

 shm_fd, 0);

• Now the process can read from to the shared memory object

• printf(“%s”, (char *)ptr);

• remove the shared memory object

 shm_unlink(name);

Please remember to unlink, name persists in OS.

16

IPC POSIX Producer

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()
{
 /* the size (in bytes) of shared memory object */
 const int SIZE = 4096;

 /* name of the shared memory object */
 const char* name = "OS";

 /* strings written to shared memory */
 const char* message_0 = "Hello";
 const char* message_1 = "World!";

 /* shared memory file descriptor */
 int shm_fd;

 /* pointer to shared memory object */
 char* ptr;

 /* create the shared memory object */
 shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

 /* configure the size of the shared memory object */
 ftruncate(shm_fd, SIZE);

 /* memory map the shared memory object */
 ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm_fd, 0);

 /* write to the shared memory object */
 sprintf(ptr, "%s", message_0);

 ptr += strlen(message_0);
 sprintf(ptr, "%s", message1);
 ptr += strlen(message_1);
 return 0;

See Self Exercises

17

IPC POSIX Producer (details)
 /* create the shared memory segment */
 shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

 /* configure the size of the shared memory segment */
 ftruncate(shm_fd,SIZE);

 /* now map the shared memory segment in the address space of the process */
 ptr = mmap(0,SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0);
 if (ptr == MAP_FAILED) {
 printf("Map failed\n");
 return -1;
 }

 /**
 * Now write to the shared memory region.
 *
 * Note we must increment the value of ptr after each write.
 */
 sprintf(ptr,"%s",message0);
 ptr += strlen(message0);
 sprintf(ptr,"%s",message1);
 ptr += strlen(message1);
 sprintf(ptr,"%s",message2);
 ptr += strlen(message2);

 return 0;
}

File descriptor FD: int that uniquely
identifies a file.

18

IPC POSIX Consumer
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()
{
 /* the size (in bytes) of shared memory object */
 const int SIZE = 4096;

 /* name of the shared memory object */
 const char* name = "OS";

 /* shared memory file descriptor */
 int shm_fd;

 /* pointer to shared memory object */
 char *ptr;

 /* open the shared memory object */
 shm_fd = shm_open(name, O_RDONLY, 0666);

 /* memory map the shared memory object */
 ptr = mmap(0, SIZE, PROT_READ, MAP_SHARED, shm_fd, 0);

 /* read from the shared memory object */
 printf("%s", (char*)ptr);

 /* remove the shared memory object */
 shm_unlink(name);
 return 0;
}

19

IPC POSIX Consumer (details)
/* open the shared memory segment */
 shm_fd = shm_open(name, O_RDONLY, 0666);
 if (shm_fd == -1) {
 printf("shared memory failed\n");
 exit(-1);
 }

 /* now map the shared memory segment in the address space of the process
*/
 ptr = mmap(0,SIZE, PROT_READ, MAP_SHARED, shm_fd, 0);
 if (ptr == MAP_FAILED) {
 printf("Map failed\n");
 exit(-1);
 }

 /* now read and print from the shared memory region */
 printf("%s",ptr);

 /* remove the shared memory segment */
 if (shm_unlink(name) == -1) {
 printf("Error removing %s\n",name);
 exit(-1);
 }

Bit mask created
by ORing flags

Mode

Memory
protection

Flag

20

Communications in Client-Server Systems

• Sockets

• Pipes

• Remote Procedure Calls

– Calling a function on another machine through
the network.

• Remote Method Invocation (Java)

– Object oriented version of RPC

21

Socket Communication

• CS457 Computer
Networks and the
Internet

80: HTTP (well known)

22

Pipes

Conduit allowing two processes to communicate

• Ordinary (“anonymous”) pipes –Typically, a parent
process creates a pipe and uses it to communicate
with a child process that it created.
– Cannot be accessed from outside the process that

created it.

– Created using pipe() in Linux.

• Named pipes (“FIFO”) – can be accessed without a
parent-child relationship.
– Created using fifo() in Linux.

23

Ordinary Pipes

Ordinary Pipes allow communication in standard producer-
consumer style
▪ Producer writes to one end (the write-end of the pipe)
▪ Consumer reads from the other end (the read-end of the

pipe)
▪ Ordinary pipes are therefore unidirectional (half duplex)
▪ Require parent-child relationship between communicating

processes
▪ pipe (int fd[]) to create pipe, fd[0] is the read-end, fd[1] is the

write-end

▪ Windows calls these anonymous pipes
Arrows do not Show direction of transfer
Right: write-end for parent or child

For a process the file descriptors identify specific files.

24

Ordinary Pipes

▪ Pipe is a special type of file.

▪ Ends identified by file descriptors (FDs).

▪ Inherited by the child

▪ Flow: from Write End of P/C to Read End of C/P
▪ Must close unused portions of the the pipe

▪ Next example: Parent to child information flow

25

UNIX pipe example 1/2 (parent)

#define READ_END 0
#define WRITE_END 1

 int fd[2];

create the pipe:
 if (pipe(fd) == -1) {
 fprintf(stderr,"Pipe failed");
 return 1;
fork a child process:
 pid = fork();

parent process:
 /* close the unused end of the pipe */
 close(fd[READ_END]);

 /* write to the pipe */
 write(fd[WRITE_END], write_msg, strlen(write_msg)+1);

 /* close the write end of the pipe */
 close(fd[WRITE_END]);

Child inherits
the pipe

Direction of flow

26

UNIX pipe example 2/2 (child)

child process:

 /* close the unused end of the pipe */

 close(fd[WRITE_END]);

 /* read from the pipe */

 read(fd[READ_END], read_msg, BUFFER_SIZE);

 printf("child read %s\n",read_msg);

 /* close the write end of the pipe */

 close(fd[READ_END]);

direction

See Self Exercises

27

Named Pipes

• Named Pipes (termed FIFO) are more
powerful than ordinary pipes

• Communication is bidirectional

• No parent-child relationship is necessary
between the communicating processes

• Several processes can use the named pipe
for communication

• Provided on both UNIX and Windows
systems

28 28

Colorado State University
Yashwant K Malaiya

Threads

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

29 29

Chapter 4: Threads

Objectives:
• Thread—basis of multithreaded systems

• APIs for the Pthreads and Java thread libraries

• implicit threading, multithreaded programming

• OS support for threads

30

Chapter 4: Threads

• Overview

• Multicore Programming

• Multithreading Models

• Thread Libraries

• Implicit Threading

• Threading Issues

• Operating System Examples

31

Modern applications are multithreaded

• Most modern applications are multithreaded
– Became common with GUI

• Threads run within application

• Multiple tasks with the application can be
implemented by separate threads
– Update display

– Fetch data

– Spell checking

– Answer a network request

• Process creation is heavy-weight while thread
creation is light-weight

• Can simplify code, increase efficiency

• Kernels are generally multithreaded

32

Multithreaded Server Architecture

33

Benefits

• Responsiveness – may allow continued execution
if part of process is blocked, especially important for
user interfaces

• Resource Sharing – threads share resources of
process, easier than shared memory or message
passing

• Economy – cheaper than process creation (10-100
times), thread switching lower overhead than context
switching

• Scalability – process can take advantage of
multiprocessor architectures

34

Multicore Programming

• Multicore or multiprocessor systems putting
pressure on programmers, challenges include:
– Dividing activities

– Balance

– Data splitting

– Data dependency

– Testing and debugging

• Parallelism implies a system can perform more than
one task simultaneously
– Extra hardware needed for parallel execution

• Concurrency supports more than one task making
progress
– Single processor / core: scheduler providing concurrency

35

Concurrency vs. Parallelism

n Concurrent execution on single-core system:

n Parallelism on a multi-core system:

36

Multicore Programming (Cont.)

• Types of parallelism
– Data parallelism – distributes subsets of the same data

across multiple cores, same operation on each

– Task parallelism – distributing threads across cores,
each thread performing unique operation

• As # of threads grows, so does architectural
support for threading
– CPUs have cores as well as hardware threads

• e.g. hyper-threading

– Oracle SPARC T4 with 8 cores, and 8 hardware threads per core
(total 64 threads)

– AMD Ryzen 7 with 4 cores and 8 threads

37

Single and Multithreaded Processes

38

Process vs Thread

• All threads in a process have same address
space (text, data, open files, signals etc.),
same global variables

• Each thread has its own
– Thread ID

– Program counter

– Registers

– Stack: execution trail, local variables

– State (running, ready, blocked, terminated)

• Thread is also a schedulable entity

39

Amdahl’s Law

Gives speedup from adding additional cores to an application
that has both serial and parallel components.

• S is serial portion (as a fraction) that cannot be broken into
parallel operations.

• Some things can possibly be done in parallel.

• N processing cores

Example: if application is 75% parallel / 25% serial, moving from 1
to 2 cores results in speedup of

 1/(0.25+ 0.75/2) = 1.6 times

• As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

40

Amdahls law: ordinary life example

• Amdahls law: ordinary life example.

 Which of the two option is faster?

– Person A cooks, person B eats and then Person C
eats.

– Person A cooks, then both person B and person C
eat at the same time.

A

B

C

A

B C

41

User Threads and Kernel Threads

• User threads - management done by user-level
threads library

• Three main thread libraries:

– POSIX Pthreads

– Windows threads

– Java threads

• Kernel threads - Supported by the Kernel

– Examples – virtually all general-purpose operating
systems, including:

• Windows

• Linux

• Mac OS X

42

Multithreading Models

How do kernel threads support user process

threads?

• Many-to-One: Many user-level threads mapped to

single kernel thread (thread library in user space

older model)

• One-to-One: (now common)

• Many-to-Many: Allows many user level threads to

be mapped to smaller or equal number of kernel

threads (older systems)

43

Many-to-One

• Many user-level threads mapped
to single kernel thread (thread
library in user space older model)

• One thread blocking causes all
to block

• Multiple threads may not run in
parallel on muticore system
because only one may be in
kernel at a time

• Few systems currently use this
model

• Examples:
– Solaris Green Threads for Java

1996

– GNU Portable Threads 2006

44

One-to-One

• Each user-level thread maps to kernel
thread

• Creating a user-level thread creates a
kernel thread

• More concurrency than many-to-one

• Number of threads per process
sometimes restricted due to overhead

• Examples
– Windows

– Linux

– Solaris 9 and later

45

Many-to-Many Model

• Allows many user level
threads to be mapped to
smaller or equal number
of kernel threads

• Allows the operating
system to create a
sufficient number of kernel
threads

• Solaris prior to version 9
2002-3

• Windows with the
ThreadFiber package NT/2000

46

Two-level Model

• Similar to M:M, except that it allows a

user thread to be bound to a kernel

thread

• Examples

– IRIX -2006

– HP-UX

– Tru64 UNIX

– Solaris 8 and earlier

47

Thread Libraries

• Thread library provides programmer

with API for creating and managing

threads

• Two primary ways of implementing

– Library entirely in user space

– Kernel-level library supported by the OS

48

POSIX Pthreads

• May be provided either as user-level or
kernel-level

• A POSIX standard (IEEE 1003.1c) API for

thread creation and synchronization 1991

• Specification, not implementation

• API specifies behavior of the thread library,
implementation is up to development of the

library

• Common in UNIX operating systems
(Solaris, Linux, Mac OS X)

	Slide 1
	Slide 2: We have seen
	Slide 3: Electronic devices in lecture room
	Slide 4: Forking PIDs
	Slide 5: Interprocess Communication – Shared Memory
	Slide 6: Interprocess Communication – Message Passing
	Slide 7: Message Passing (Cont.)
	Slide 8: Direct Communication
	Slide 9: Indirect Communication
	Slide 10: Indirect Communication
	Slide 11: Indirect Communication
	Slide 12: Synchronization(blocking or not)
	Slide 13: Examples of IPC Systems
	Slide 14: Ex. POSIX Shared Memory (1)
	Slide 15: Ex. POSIX Shared memory (2)
	Slide 16: IPC POSIX Producer
	Slide 17: IPC POSIX Producer (details)
	Slide 18: IPC POSIX Consumer
	Slide 19: IPC POSIX Consumer (details)
	Slide 20: Communications in Client-Server Systems
	Slide 21: Socket Communication
	Slide 22: Pipes
	Slide 23: Ordinary Pipes
	Slide 24: Ordinary Pipes
	Slide 25: UNIX pipe example 1/2 (parent)
	Slide 26: UNIX pipe example 2/2 (child)
	Slide 27: Named Pipes
	Slide 28
	Slide 29
	Slide 30: Chapter 4: Threads
	Slide 31: Modern applications are multithreaded
	Slide 32: Multithreaded Server Architecture
	Slide 33: Benefits
	Slide 34: Multicore Programming
	Slide 35: Concurrency vs. Parallelism
	Slide 36: Multicore Programming (Cont.)
	Slide 37: Single and Multithreaded Processes
	Slide 38: Process vs Thread
	Slide 39: Amdahl’s Law
	Slide 40: Amdahls law: ordinary life example
	Slide 41: User Threads and Kernel Threads
	Slide 42: Multithreading Models
	Slide 43: Many-to-One
	Slide 44: One-to-One
	Slide 45: Many-to-Many Model
	Slide 46: Two-level Model
	Slide 47: Thread Libraries
	Slide 48: POSIX Pthreads

