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We have seen

When does the child process begin execution? ok ().
What does fork( ) return?

— It returns the value 0 in the child process. ciws ppisnot zero
— In the parent fork( ) returns the PID of the child.

Fork is not a branch or a function call like the ordinary programs you have worked with in the past. The
child process is a separate process.

getpid(), getppid( )

rv = wait(&wstatus);
— Caller will block until the child exits or finishes.
— on success, returns PID of the terminated child; on error, -1 is returned.
— Status in wstatus variable, extracted using WEXITSTATUS(wstatus)

Self exercise 3: Examine, compile and and run programes.
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Electronic devices in lecture room

Use of Laptops, phones and other devices are not permitted.
Exception: only with the required pledge that you will

— Must have a reason for request

— use it only for class related note taking, which must be submitted on
15t and 15™ of each month to retain permission.

— not distract others, turn off wireless, last row

Laptop use lowers student grades, experiment shows, Screens also distract laptop-
free classmates
The Case for Banning Laptops in the Classroom

Laptop multitasking hinders classroom learning for both users and nearby
peers
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http://www.cbc.ca/news/technology/laptop-use-lowers-student-grades-experiment-shows-1.1401860
http://www.cbc.ca/news/technology/laptop-use-lowers-student-grades-experiment-shows-1.1401860
https://www.newyorker.com/tech/elements/the-case-for-banning-laptops-in-the-classroom
https://www.sciencedirect.com/science/article/pii/S0360131512002254
https://www.sciencedirect.com/science/article/pii/S0360131512002254

Forking PIDs

#include <sys/types.h>
#include <stdio.h>

#include <unistd.h>

int main(){

}
4

return O;

parent resumes

> wait

pid_t cid; @
/* fork a child process */ ~
cid = fork(); o

if (cid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed\n");

return 1; Parent and the child processes

run concurrently.

}
else if (cid == 0) { /* child process */
printf("l am the child %d, my PID is %d\n", cid, getpid());
execlp("/bin/Is","Is" ,NULL);
}
else { /* parent process */
/* parent will wait for the child to complete */
printf("l am the parent with PID %d, my parent is %d, my child is %d\n",getpid(), getppid(), cid);
wait(NULL);

printf("Child Complete\n");

Colorado State University



Interprocess Communication — Shared Memory

Each process has its own private address
space.

An area of memory shared among the
processes that wish to communicate

The communication is under the control of Ohly one brocess
the user processes, not the operating system. may access

shared memory

Major issue is to provide mechanism that w atatime
allow the user processes to synchronize#fiei
actions when they access shared memory.

— Synchronization is discussed in great details in a
later Chapter.

POSIX Example soon.

Colorado State University



Interprocess Communication — Message Passing

 Mechanism for processes to communicate
and to synchronize their actions

* Message system — processes communicate
with each other without resorting to shared

variables

* |PC facility provides two operations:
— send(message)
— receive(message)

* The message size is either fixed or variable

Colorado State University



Message Passing (Cont.)

* Implementation of communication link
— Physical:

e Shared memory
e Hardware bus
* Network

— Logical: Options (details next)
* Direct (process to process) or indirect (mail box)
* Synchronous (blocking) or asynchronous (non-blocking)
» Automatic or explicit buffering

Colorado State University



Direct Communication

* Processes must name each other explicitly:

— send (P message) — send a message to process P

— receive(Q, message) — receive a message from
process Q

* Properties of communication link
— Links are established automatically

— A link is associated with exactly one pair of
communicating processes

— Between each pair there exists exactly one link

— The link may be unidirectional, but is usually bi-
directional

Colorado State University



Indirect Communication

 Messages are directed and received from
mailboxes (also referred to as ports)

Each mailbox has a unique id
Processes can communicate only if they share a mailbox

* Properties of communication link

Link established only if processes share a common
mailbox

A link may be associated with many processes

Each pair of processes may share several communication
links

Link may be unidirectional or bi-directional

Colorado State University



Indirect Communication

10

* QOperations

— create a new mailbox (port)
— send and receive messages through mailbox
— destroy a mailbox

* Primitives are defined as:
send(A, message) — send a message to mailbox A

receive(A, message) — receive a message from
mailbox A

Colorado State University



Indirect Communication

11

* Mailbox sharing
— P, P,, and P; share mailbox A
— P, sends; P, and P; receive

— Who gets the message?

e Possible Solutions

— Allow a link to be associated with at most two
processes

— Allow only one process at a time to execute a
receive operation

— Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

Colorado State University
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Synchronization( blocking or not)

 Message passing may be either blocking or non-

blocking

* Blocking is termed synchronous

— Blocking send -- sender is blocked until message is received

— Blocking receive -- receiver is blocked until a message is
available

* Non-blocking is termed asynchronous

— Non-blocking send -- sender sends message and continues

— Non-blocking receive -- the receiver receives:
A valid message, or
Null message

Different combinations possible
If both send and receive are blocking, we have a rendezvous.
Producer-Consumer problem: Easy if both block

Colorado State University



Examples of IPC Systems

OSs support many different forms of IPC*. We will look at
two of them

 Shared Memory
* Pipes

* Linux kernel supports: Signals, Anonymous Pipes, Named Pipes or FIFOs,
SysV Message Queues, POSIX Message Queues, SysV Shared memory, POSIX
Shared memory, SysV semaphores, POSIX semaphores, FUTEX locks, File-
backed and anonymous shared memory using mmap, UNIX Domain Sockets,
Netlink Sockets, Network Sockets, Inotify mechanisms, FUSE subsystem, D-Bus
subsystem

Colorado State University
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Ex. POSIX Shared Memory (1)

= QOlder scheme (System V) us3d shmget(), shmat(), shmdt(), shmctl()
=  POSIX Shared Memory

14

First process first creates shared memory segment
shm fd = shm open(name, O CREAT | O RDWR, 0666) ;

* Returns file descriptor (int)
* |dentified by name (string)

* Also used to open an existing segment to share it
Set the size of the object

ftruncate (shm fd, 4096);
map the shared memory segment in the address space of the process
ptr = mmap(0,SIZE, PROT READ | PROT WRITE,
MAP SHARED, shm fd, 0);
Now the process could write to the shared memory
sprintf (ptr, "Writing to shared memory") ;

Colorado State University



Ex. POSIX Shared memory (2)

= POSIX Shared Memory

e Other process opens shared memory object name
shm fd = shm open(name, O RDONLY, 0666) ;

e Returns file descriptor (int) which identifies the file
* map the shared memory object

ptr = mmap (0,SIZE, PROT READ, MAP SHARED,

shm £d4, 0);

* Now the proces:can read from to the shared memory object
* printf(“"%$s”, (char *)ptr);
 remove the shared memory object

shm unlink (name) ;

Please remember to unlink, name persists in OS.

Colorado State University
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#include <sys/shm.h>
#include <sys/stat.h>

int main()

{
/* thesize (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */
const char* name ="0S";

/* strings written to shared memory */
const char* message_0= "Hello";
const char* message_1="World!";

/* shared memory file descriptor */
intshm_fd;

/* pointer to shared memory object */
char* ptr;

/* create the shared memory object */
shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

/* configure the size of the shared memory object */
ftruncate(shm_fd, SIZE);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm_fd, 0);

/* write to the shared memory object */
sprintf(ptr, "%s", message_0);

ptr += strlen(message_0);
sprintf(ptr, "%s", messagel);
ptr += strlen(message_1);
return 0;

IPC POSIX Producer

See Self Exercises

Colorado State University



IPC POSIX Producer (details)

/* create the shared memory segment */

Shm_fd = Shm_Open(name, O_CREAT | O_RDWR, 0666); File descriptor FD:int that unique|y
identifies a file.

/* configure the size of the shared memory segment */

ftruncate(shm_fd,SIZE);

/* now map the shared memory segment in the address space of the process */
ptr = mmap(0,SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0);
if (ptr == MAP_FAILED) {

printf("Map failed\n");

return -1;

}
/**

* Now write to the shared memory region.
*

* Note we must increment the value of ptr after each write.
*/

sprintf(ptr,"%s",message0);

ptr += strlen(message0);

sprintf(ptr,"%s",messagel);

ptr += strlen(messagel);

sprintf(ptr,"%s",message2);

ptr += strlen(message?2);

return 0; Colorado State l]niversity
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|IPC POSIX Consumer

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */
const char* name = "OS";

/* shared memory file descriptor */
intshm_fd;

/* pointer to shared memory object */
char *ptr;

/* open the shared memory object */
shm_fd = shm_open(name, O_RDONLY, 0666);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_READ, MAP_SHARED, shm_fd, 0);

/* read from the shared memory object */
printf("%s", (char*)ptr);

/* remove the shared memory object */
shm_unlink(name);
return 0;

Colorado State University
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/* open the shared memory segment */

*/

IPC POSIX Consumer (details)

Bit mask created
by ORing flags

shm_fd = shm_open(name, O_RDONLY, 0666);
if (shm_fd ==-1) {
printf("shared memory failed\n");
exit(-1);
} Memory
protection

/* now map the shared memory segs In the address space of the process

ptr = mmap(0,SIZE, PROT_READ, MAP_SHARED, shm_fd, 0);

if (ptr == MAP_FAILED) {
printf("Map failed\n");
exit(-1);

}

/* now read and print from the shared memory region */
printf("%s",ptr);

/* remove the shared memory segment */

if (shm_unlink(name) ==-1) {
printf("Error removing %s\n",name);
exit(-1);

} Colorado State University



Communications in Client-Server Systems

e Sockets
* Pipes

Colorado State University
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Socket Communication

host X
(146.86.5.20) 80: HTTP (well known)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

* CS457 Computer
Networks and the
Internet

Colorado State University
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Conduit allowing two processes to communicate

* Ordinary (“anonymous”) pipes —Typically, a parent
process creates a pipe and uses it to communicate
with a child process that it created.

— Cannot be accessed from outside the process that
created it.

— Created using pipe( ) in Linux.

 Named pipes (“FIFO”) — can be accessed without a
parent-child relationship.

— Created using fifo( ) in Linux.

Colorado State University
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Ordinary Pipes
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Ordinary Pipes allow communication in standard producer-
consumer style

Producer writes to one end (the write-end of the pipe)
Consumer reads from the other end (the read-end of the
pipe)

Ordinary pipes are therefore unidirectional (half duplex)

Require parent-child relationship between communicating
processes

pipe (int fd[]) to create pipe, fd[0] is the read-end, fd[1] is the
write-end

parent child
fd[O] fd[1] fd[O] fd[1]

E E

Windows calls these anonymous pipes

Arrows do not Show direction of transfer
Right: write-end for parent or child

For a process the file descriptors identify specific files.

Colorado State University



Ordinary Pipes

= Pipeis a special type of file.
= Ends identified by file descriptors (FDs).
= |nherited by the child
=  Flow: from Write End of P/C to Read End of C/P

= Must close unused portions of the the pipe

=  Next example: Parent to child information flow

parent child
fd[0]  fd[1] fd[0] fd[1]

SR

Colorado State University
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UNIX pipe example 1/2 (parent)

. parent child
#define READ_END O fd[0]  fd[1] fd0]  fd[1]
#define WRITE_END 1

— ipe : ‘J
int fd[2]; PP :

create the pipe: : .
f (pipe(fd) == -1) { Direction of flow

fprintf(stderr,"Pipe failed");
return 1;

fork a child process: Child inherits
pid = fork();

the pipe

parent process:
/* close the unused end of the pipe */
close(fd[READ _END]);

/* write to the pipe */
write(fd[WRITE_END], write_msg, strlen(write_msg)+1);

/* close the write end of the pipe */

close(fd[WRITE_END]);
Colorado State University



UNIX pipe example 2/2 (child)

parent child
fd[0] fd[1] fd[0] fd[1]

S
child process: m

/* close the unused end of the pipe */
close(fd[WRITE_END]);

/* read from the pipe */
read(fd[READ_END], read_msg, BUFFER_SIZE);
printf("child read %s\n",read_msg);

/* close the write end of the pipe */
close(fd[READ_END]);

See Self Exercises

e Colorado State University



Named Pipes

27

Named Pipes (termed FIFO) are more
powerful than ordinary pipes

Communication is bidirectional

No parent-child relationship is necessary
between the communicating processes

Several processes can use the named pipe
for communication

Provided on both UNIX and Windows
systems

Colorado State University
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Chapter 4: Threads

Objectives:

Thread—Dbasis of multithreaded systems
APIls for the Pthreads and Java thread libraries
iImplicit threading, multithreaded programming

OS support for threads

code data

files

code

data

files

registers

stack

registers

registers

registers

thread —> ;

stack

stack

stack

:

:

34—— thread

single-threaded process

multithreaded process

Colorado$tate University
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Chapter 4: Threads

Overview

Multicore Programming
Multithreading Models
Thread Libraries

Implicit Threading

Threading Issues

Operating System Examples

Colorado State University
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Modern applications are multithreaded

Most modern applications are multithreaded
— Became common with GUI

Threads run within application

Multiple tasks with the application can be
Implemented by separate threads

— Update display

— Fetch data

— Spell checking
— Answer a network request

Process creation is heavy-weight while thread
creation is light-weight

Can simplify code, increase efficiency
Kernels are generally multithreaded

Colorado State University



Multithreaded Server Architecture

(2) create new
(1) request thread to service
the request
server > thread

U

(3) resume listening
for additional
client requests

Y

client

Colorado State University
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 Responsiveness — may allow continued execution
If part of process is blocked, especially important for
user interfaces

 Resource Sharing — threads share resources of
process, easier than shared memory or message
passing

« Economy — cheaper than process creation (10-100

times), thread switching lower overhead than context
switching

« Scalability — process can take advantage of
multiprocessor architectures

Colorado State University
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Multicore Programming

« Multicore or multiprocessor systems putting
pressure on programmers, challenges include:
— Dividing activities
— Balance
— Data splitting
— Data dependency
— Testing and debugging

« Parallelism implies a system can perform more than
one task simultaneously
— Extra hardware needed for parallel execution
« Concurrency supports more than one task making
progress
— Single processor / core: scheduler providing concurrency

Colorado State University
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Concurrency vs. Parallelism

n  Concurrent execution on single-core system:

single core T4 To T3 Ty T4 T5 T3 T4 T4 . ‘
time
n  Parallelism on a multi-core system:
core 1 T4 Ts T4 Ts T4
core 2 To Ty To Ty To
time R
. Colorado State University



Multicore Programming (Cont.)

* Types of parallelism

— Data parallelism — distributes subsets of the same data
across multiple cores, same operation on each

— Task parallelism — distributing threads across cores,
each thread performing unique operation
« As # of threads grows, so does architectural
support for threading
— CPUs have cores as well as hardware threads

* e.g. hyper-threading

— Oracle SPARC T4 with 8 cores, and 8 hardware threads per core
(total 64 threads)

— AMD Ryzen 7 with 4 cores and 8 threads

Colorado State University
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Single and Multithreaded Processes

code

data

files

registers

registers

registers

code data files
registers stack
thread ——>

stack

stack

stack

single-threaded process

<

— thread

multithreaded process

Colorado State University



Process vs Thread

38

« All threads in a process have same address
space (text, data, open files, signals etc.),
same global variables

« Each thread has its own
— Thread ID
— Program counter
— Registers
— Stack: execution trail, local variables
— State (running, ready, blocked, terminated)

 Thread is also a schedulable entity

Colorado State University



Amdahl’s Law

39

Gives speedup from adding additional cores to an application
that has both serial and parallel components.

- Sis serial portion (as a fraction) that cannot be broken into
parallel operations.

« Some things can possibly be done in parallel.
* N processing cores

speedup <

Example: if apFquation IS 75%fpara||e| | 25% serial, moving from 1
to 2 cores results in speedup o

1/(0.25+ 0.75/2) = 1.6 times
* As N approaches infinity, speedup approaches 1/ S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

Colorado State University
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Amdahls law: ordinary life example

* Amdahls law: ordinary life example.
Which of the two option is faster?

— Person A cooks, person B eats and then Person C
eats.

— Person A cooks, then both person B and person C
eat at the same time.

4
439

Colorado State University




User Threads and Kernel Threads

» User threads - management done by user-level
threads library

 Three main thread libraries:
— POSIX Pthreads
— Windows threads
— Java threads

« Kernel threads - Supported by the Kernel

— Examples — virtually all general-purpose operating
systems, including:
* Windows
e Linux
« Mac OS X

Colorado State University
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Multithreading Models

42

How do kernel threads support user process
threads?

« Many-to-One: Many user-level threads mapped to
single kernel thread (thread library in user space

older model)

* One-to-One: (now common)

« Many-to-Many: Allows many user level threads to
be mapped to smaller or equal number of kernel

th re ad S (older systems)
Colorado State University



Many-to-One
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Many user-level threads mapped
to single kernel thread (thread
library in user space older model)

One thread blocking causes all
to block

Multiple threads may not run in
parallel on muticore system
because only one may be in
kernel at a time

Few systems currently use this
model

Examples:

— Solaris Green Threads for Java
1996

— GNU Portable Threads 2006

SN

<«— kernel thread

Colorado State University



« Each user-level thread maps to kernel
thread

e Creating a user-level thread creates a
kernel thread

« More concurrency than many-to-one

 Number of threads per process
sometimes restricted due to overhead

« Examples ;

<«— user thread

— Windows

— Linux
— Solaris 9 and later
<«—kernel thread

Colorado State University
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Many-to-Many Model

45

« Allows many user level
threads to be mapped to
smaller or equal number
of kernel threads

« Allows the operating
system to create a
sufficient number of kernel
threads

« Solaris prior to version 9

2002-3

 Windows with the
ThreadFiber paCkage NT/2000

:

S

24— user thread

<«— kernel thread

Colorado State University



Two-level Model

« Similar to M:M, except that it allows a
user thread to be bound to a kernel
threao

 Examples ; ; ; e
— |IRIX -2006
— HP-UX
— Tru64 UNIX
— Solaris 8 and eatrlier @ —— emel tread

26 Colorado State University



Thread Libraries

* Thread library provides programmer
with API for creating and managing
threads

« Two primary ways of implementing
— Library entirely in user space
— Kernel-level library supported by the OS

Colorado State University
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POSIX Pthreads
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May be provided either as user-level or
kernel-level

A POSIX standard (IEEE 1003.1c) API for
thread creation and synchronization 1991

Specification, not implementation

API specifies behavior of the thread library,
Implementation is up to development of the
library

Common in UNIX operating systems
(Solaris, Linux, Mac OS X)

Colorado State University
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