
1 1

Colorado State University
Yashwant K Malaiya

Fall 24 Lecture 6
OS Structures/Processes

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2 2

CS370 OS Ch3 Processes
• Process Concept: a program in execution

• Process Scheduling

• Processes creation and termination

• Interprocess Communication using shared
memory and message passing

3

Diagram of Process State

Transitions:
Ready to Running: scheduled by scheduler
Running to Ready: scheduler picks another process, back in ready queue

Running to Waiting (Blocked) : process blocks for input/output
Waiting to Ready: I/O or event done

In the Ready
Queue

4

CPU Switch From Process to Process

5

Representation of Process Scheduling

Queueing diagram represents queues, resources, flows

Assumes a single CPU. Common until recently

6

Context Switch

• When CPU switches to another process, the
system must save the state of the old process
and load the saved state for the new process
via a context switch

• Context of a process represented in the PCB
• Context-switch time is overhead; the system

does no useful work while switching
– The more complex the OS and the PCB ➔ the longer

the context switch

• Time dependent on hardware support
– Some hardware provides multiple sets of registers

per CPU ➔ multiple contexts loaded at once

7

Processes creation & termination

8

Process Creation

• Parent process create children processes,
which, in turn create other processes, forming
a tree of processes

• Generally, process identified and managed via a
process identifier (pid)

• Resource sharing options
– Parent and children share all resources?

– Children share subset of parent’s resources?

– Parent and child share no resources or just a few*?

• Execution options
– Parent and children execute concurrently?

– Parent waits until children terminate*?

9

A Tree of Processes in Linux

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

10

Process Creation (Cont.)

• Address space

– Child duplicate of parent

– Child has a program loaded into it

• UNIX examples
– fork() system call creates new process

– exec() system call used after a fork() to replace the

process’ memory space with a new program

11

Fork () to create a child process
• Fork creates a copy of process

• Return value from fork (): integer

– When > 0:

• Running in (original) Parent process

• return value is pid of new child

– When = 0:

• Running in new Child process

– When < 0:
• Error! Perhaps exceeds resource constraints. sets errno (a global variable in errno.h)

• Running in original process

• All of the state of original process duplicated in
both Parent and Child! Almost ..

– Memory, File Descriptors (next topic), etc…

12

Process Management System Calls
• UNIX fork – system call to create a copy of the current process,

and start it running
– No arguments!

• UNIX exec – system call to change the program being run by the
current process. Several variations.

• UNIX wait – system call to wait for a process to finish

• Details: see man pages

Some examples:

• pid_t pid = getpid(); /* get current processes PID */;

• waitpid(cid, 0, 0); /* Wait for my child to terminate. */

• exit (0); /* Quit*/

• kill(cid, SIGKILL); /* Kill child*/

http://man7.org/linux/man-pages/man3/execl.3.html

13

UNIX Process Management

child

parent

14

C Program Forking Separate Process

execlp(3) - Linux man page
http://linux.die.net/man/3/execlp

<sys/types.h> definitions of derived types
<unistd.h> POSIX API

http://linux.die.net/man/3/execlp

15

Forking PIDs
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int main(){
 pid_t cid;

 /* fork a child process */
cid = fork();
if (cid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed\n");
 return 1;
 }
 else if (cid == 0) { /* child process */
 printf("I am the child %d, my PID is %d\n", cid, getpid());
 execlp("/bin/ls","ls",NULL);
 }
 else { /* parent process */
 /* parent will wait for the child to complete */
 printf("I am the parent with PID %d, my parent is %d, my child is %d\n",getpid(), getppid(), cid);
 wait(NULL);

 printf("Child Complete\n");
 }

 return 0;
}

Ys-MacBook-Air:ch3 ymalaiya$./newproc-posix_m
I am the parent with PID 494, my parent is 485, my child is 496
I am the child 0, my PID is 496
DateClient.java newproc-posix_m

Child Complete
Ys-MacBook-Air:ch3 ymalaiya$

https://www.tutorialspoint.com/compile_c_online.phpSee self-exercise in Teams

https://www.tutorialspoint.com/compile_c_online.php

16

wait/waitpid

• Wait/waitpid () allows caller to suspend execution
until child’s status is available

• Process status availability
– Generally, after termination
– Or if process is stopped

• pid_t waitpid(pid_t pid, int *status, int options);
• The value of pid can be:

– 0 wait for any child process with same process group ID
(perhaps inherited)

– > 0 wait for child whose process group ID is equal to the
value of pid

– -1 wait for any child process (equi to wait ())

• Status: where status info needs to be saved

17

Linux: fork ()

• Search for man fork()
• http://man7.org/linux/man-pages/man2/fork.2.html

NAME fork - create a child process

SYNOPSIS #include <unistd.h>

 pid_t fork(void);

DESCRIPTION fork() creates a new process by duplicating the calling
process. The new process is referred to as the child process. …

 The child process and the parent process run in separate memory spaces…

 The child process is an exact duplicate of the parent process except for the
following points: ….

RETURN VALUE On success, the PID of the child process is returned in the
parent, and 0 is returned in the child. On failure, -1 is returned in the

parent, no child process is created, and errno is set appropriately.

EXAMPLE See pipe(2) and wait(2).

…

errno is a global variable in errno.h

http://man7.org/linux/man-pages/man2/fork.2.html

18

Process Group ID

• Process group is a collection of related
processes

• Each process has a process group ID

• Process group leader?
– Process with pid equal to pgid

• A process group has an associated controlling
terminal, usually the user’s keyboard
– Control-C: sends interrupt signal (SIGINT) to all

processes in the process group

– Control-Z: sends the suspend signal (SIGSTOP) to
all processes in the process group

Applies to foreground processes: those interacting
With the terminal

19

Process Groups

A child Inherits parent’s process group ID. Parent or
child can change group ID of child by using setpgid.

By default, a Process Group comprises:
• Parent (and further ancestors)
• Siblings
• Children (and further descendants)

A process can only send signals to members of its
process group
• Signals are a limited form of inter-process communication

used in Unix.
• Signals can be sent using system call

– int kill(pid_t pid, int sig);

http://man7.org/linux/man-pages/man2/kill.2.html

20

Process Termination

• Process executes last statement and then asks
the operating system to delete it using the
exit() system call.
– Returns status data from child to parent (via wait())
– Process’ resources are deallocated by operating

system

• Parent may terminate the execution of children
processes using the kill() system call.
Some reasons for doing so:
– Child has exceeded allocated resources
– Task assigned to child is no longer required
– The parent is exiting and the operating systems does

not allow a child to continue if its parent terminates

kill(child_pid,SIGKILL);

21

Process Termination

• Some operating systems do not allow child to exists if its
parent has terminated. If a process terminates, then all its
children must also be terminated.
– cascading termination. All children, grandchildren, etc. are

terminated.
– The termination is initiated by the operating system.

• The parent process may wait for termination of a child
process by using the wait()system call. The call returns
status information and the pid of the terminated process

 pid = wait(&status);

• If no parent waiting (did not invoke wait()) process is a
zombie

• If parent terminated without invoking wait , process is an
orphan (it is still running, reclaimed by init)

Zombie: a process that has completed execution (via
the exit system call) but still has an entry in the process
table

22

Multi-process Program Ex – Chrome Browser

• Early web browsers ran as single process
– If one web site causes trouble, entire browser can hang or

crash

• Google Chrome Browser is multiprocess with 3
different types of processes:
– Browser process manages user interface, disk and

network I/O

– Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website
opened
• Runs in sandbox restricting disk and network I/O, minimizing

effect of security exploits

– Plug-in process for each type of plug-in

23

Multitasking

24

Cooperating Processes

• Independent process cannot affect or be
affected by the execution of another process

• Cooperating process can affect or be affected
by the execution of another process

• Advantages of process cooperation

– Information sharing

– Computation speed-up

– Modularity

– Convenience

25

Interprocess Communication

• Processes within a system may be independent or
cooperating

• Cooperating process can affect or be affected by other
processes, including sharing data

• Reasons for cooperating processes:
– Information sharing
– Computation speedup
– Modularity
– Convenience

• Cooperating processes need interprocess communication
(IPC)

• Two models of IPC
– Shared memory
– Message passing

26

Producer-Consumer Problem

• Common paradigm for cooperating
processes, producer process produces
information that is consumed by a consumer
process

– unbounded-buffer places no practical limit on the
size of the buffer

– bounded-buffer assumes that there is a fixed
buffer size

Why do we need a buffer (shared memory region)?
- The producer and the consumer process operate at their own speeds. Items wait in the buffer when consumer is slow.
Where does the bounded buffer “start”?
- It is circular

27

Bounded-Buffer – Shared-Memory Solution

• Shared data

#define BUFFER_SIZE 8

typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

• in points to the next free position in the buffer
• out points to the first full position in the buffer.
• Buffer is empty when in == out;
• Buffer is full when
 ((in + 1) % BUFFER SIZE) == out. (Circular buffer)
• This scheme can only use BUFFER_SIZE-1

elements

Out In

0 1 2 3 4 5 6 7

(2+1)%8 =3 but (7+1)%8 =0

28

Bounded-Buffer – Producer

item next_produced;
while (true) {
 /* produce an item in next produced */
 while (((in + 1) % BUFFER_SIZE) == out)
 ; /* do nothing */
 buffer[in] = next_produced;
 in = (in + 1) % BUFFER_SIZE;
}

Out In

0 1 2 3 4 5 6 7

29

Bounded Buffer – Consumer

item next_consumed;

while (true) {

 while (in == out)

 ; /* do nothing */

 next_consumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 /* consume the item in next consumed */

}

Out In

0 1 2 3 4 5 6 7

30

Interprocess Communication – Shared Memory

• Each process has its own private address
space.

• An area of memory shared among the
processes that wish to communicate

• The communication is under the control of
the user processes, not the operating system.

• Major issue is to provide mechanism that will
allow the user processes to synchronize their
actions when they access shared memory.
– Synchronization is discussed in great details in a

later Chapter.

• Example soon.

Only one process
may access

shared memory

at a time

31

Interprocess Communication – Message Passing

• Mechanism for processes to communicate
and to synchronize their actions

• Message system – processes communicate
with each other without resorting to shared
variables

• IPC facility provides two operations:
– send(message)

– receive(message)

• The message size is either fixed or variable

32

Message Passing (Cont.)

• If processes P and Q wish to communicate, they need
to:
– Establish a communication link between them
– Exchange messages via send/receive

• Implementation issues:
– How are links established?
– Can a link be associated with more than two processes?
– How many links can there be between every pair of

communicating processes?
– What is the capacity of a link?
– Is the size of a message that the link can accommodate

fixed or variable?
– Is a link unidirectional or bi-directional?

33

Message Passing (Cont.)

• Implementation of communication link
– Physical:

• Shared memory

• Hardware bus

• Network

– Logical: Options (details next)
• Direct (process to process) or indirect (mail box)

• Synchronous (blocking) or asynchronous (non-blocking)

• Automatic or explicit buffering

35

Direct Communication

• Processes must name each other explicitly:
– send (P, message) – send a message to process P

– receive(Q, message) – receive a message from
process Q

• Properties of communication link
– Links are established automatically

– A link is associated with exactly one pair of
communicating processes

– Between each pair there exists exactly one link

– The link may be unidirectional, but is usually bi-
directional

36

Indirect Communication

• Messages are directed and received from
mailboxes (also referred to as ports)
– Each mailbox has a unique id

– Processes can communicate only if they share a mailbox

• Properties of communication link
– Link established only if processes share a common

mailbox

– A link may be associated with many processes

– Each pair of processes may share several communication
links

– Link may be unidirectional or bi-directional

37

Indirect Communication

• Operations

– create a new mailbox (port)

– send and receive messages through mailbox

– destroy a mailbox

• Primitives are defined as:

 send(A, message) – send a message to mailbox A

 receive(A, message) – receive a message from
mailbox A

38

Indirect Communication

• Mailbox sharing

– P1, P2, and P3 share mailbox A

– P1, sends; P2 and P3 receive

– Who gets the message?

• Possible Solutions

– Allow a link to be associated with at most two
processes

– Allow only one process at a time to execute a
receive operation

– Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

39

Synchronization(blocking or not)

• Message passing may be either blocking or non-
blocking

• Blocking is termed synchronous
– Blocking send -- sender is blocked until message is received

– Blocking receive -- receiver is blocked until a message is
available

• Non-blocking is termed asynchronous
– Non-blocking send -- sender sends message and continues

– Non-blocking receive -- the receiver receives:
 A valid message, or

 Null message

Different combinations possible
If both send and receive are blocking, we have a rendezvous.

Producer-Consumer problem: Easy if both block

40

Examples of IPC Systems

OSs support many different forms of IPC*. We will look at
two of them

• Shared Memory

• Pipes

* Linux kernel supports: Signals, Anonymous Pipes, Named Pipes or FIFOs,
SysV Message Queues, POSIX Message Queues, SysV Shared memory, POSIX
Shared memory, SysV semaphores, POSIX semaphores, FUTEX locks, File-
backed and anonymous shared memory using mmap, UNIX Domain Sockets,
Netlink Sockets, Network Sockets, Inotify mechanisms, FUSE subsystem, D-Bus
subsystem

	Slide 1
	Slide 2
	Slide 3: Diagram of Process State
	Slide 4: CPU Switch From Process to Process
	Slide 5: Representation of Process Scheduling
	Slide 6: Context Switch
	Slide 7: Processes creation & termination
	Slide 8: Process Creation
	Slide 9: A Tree of Processes in Linux
	Slide 10: Process Creation (Cont.)
	Slide 11: Fork () to create a child process
	Slide 12: Process Management System Calls
	Slide 13: UNIX Process Management
	Slide 14: C Program Forking Separate Process
	Slide 15: Forking PIDs
	Slide 16: wait/waitpid
	Slide 17: Linux: fork ()
	Slide 18: Process Group ID
	Slide 19: Process Groups
	Slide 20: Process Termination
	Slide 21: Process Termination
	Slide 22: Multi-process Program Ex – Chrome Browser
	Slide 23: Multitasking
	Slide 24: Cooperating Processes
	Slide 25: Interprocess Communication
	Slide 26: Producer-Consumer Problem
	Slide 27: Bounded-Buffer – Shared-Memory Solution
	Slide 28: Bounded-Buffer – Producer
	Slide 29: Bounded Buffer – Consumer
	Slide 30: Interprocess Communication – Shared Memory
	Slide 31: Interprocess Communication – Message Passing
	Slide 32: Message Passing (Cont.)
	Slide 33: Message Passing (Cont.)
	Slide 35: Direct Communication
	Slide 36: Indirect Communication
	Slide 37: Indirect Communication
	Slide 38: Indirect Communication
	Slide 39: Synchronization(blocking or not)
	Slide 40: Examples of IPC Systems

