CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 24 Lecture 6
OS Structures/Processes

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

CS370 0OS Ch3 Processes

* Process Concept: a program in execution
* Process Scheduling
* Processes creation and termination

* Interprocess Communication using shared
memory and message passing

ColoradoState University

Diagram of Process State

admitted interrupt

In the Ready
Queue

I/O or event completion I/O or event wait

Transitions:
Ready to Running: scheduled by scheduler
Running to Ready: scheduler picks another process, back in ready queue

Running to Waiting (Blocked) : process blocks for input/output
Waiting to Ready: I/O or event done

Colorado State University

CPU Switch From Process to Process

process P,

executing ;L /
h J

executing |
\'4

-

\idle

=

operating system process P,

interrupt or system call

save state into PCB,

reload state from PCB, 1
interrupt or system call

! ¥

save state into PCB;

reload state from PCB,

>idle

executing

~

>idle

Colorado State University

Representation of Process Scheduling

O Queueing diagram represents queues, resources, flows

_____, ready queue CPU >
l/O queue *&—— /O request &—
time slice :
expired
child fork a
@ child y
interrupt walit for an
OcCcurs interrupt
Assumes a single CPU. Common until recently
. Colorado State University

Context Switch

When CPU switches to another process, the
system must save the state of the old process
and load the saved state for the new process
via a context switch

Context of a process represented in the PCB

Context-switch time is overhead; the system
does no useful work while switching

— The more complex the OS and the PCB = the longer
the context switch

Time dependent on hardware support

— Some hardware provides multiple sets of registers
per CPU =» multiple contexts loaded at once

Colorado State University

Processes creation & termination

Colorado State University

Process Creation

* Parent process create children processes,
which, in turn create other processes, forming
a tree of processes

* Generally, process identified and managed via a
process identifier (pid)
* Resource sharing options
— Parent and children share all resources?
— Children share subset of parent’ s resources?
— Parent and child share no resources orjustafew™?
* Execution options

— Parent and children execute concurrently?
— Parent waits until children terminate™?

Colorado State University

A Tree of Processes in Linux

login
pid = 8415

kthreadd sshd
pid = 2 pid = 3028

bash khelper pdflush . sshd
pid = 8416 pid = 6 pid = 200 pid = 3610
e Y id = 4005
pid = 9298 pid = 9204 pia =

Colorado State University

Process Creation (Cont.)

* Address space

— Child duplicate of parent
— Child has a program loaded into it

 UNIX examples
— fork () system call creates new process

— exec () system call used after a fork () to replace the
process’ memory space with a new program

parent resumes

child : exec()

Colorado State University

10

Fork () to create a child process

* Fork creates a copy of process

e Return value from fork (): intege-
— When > 0:

* Runningin (original) Parent process
* return value is pid of new child

— When =0:
* Runningin new Child process

— When < O:;

* Error! Perhaps exceeds resource constraints. sets errno (a global variable in errno.h)

* Runningin original process

* All of the state of original process duplicated in
both Parent and Child! ume.

— Memory, File Descriptors (next topic&(ﬁtc.ud State Uni ersity
Oorado Univ

11

Process Management System Calls

UNIX fork — system call to create a copy of the current process,
and start it running

— No arguments!

UNIX exec — system call to change the program being run by the
current process. Several variations.

UNIX wait — system call to wait for a process to finish
Details: see man pages

Some examples:

12

pid_t pid = getpid(); /* get current processes PID */;
waitpid(cid, 0, 0); /* Wait for my child to terminate. */
exit (0); /* Quit*/

kill(cid, SIGKILL); /* Kill child*/

Colorado State University

http://man7.org/linux/man-pages/man3/execl.3.html

UNIX Process Management

13

pid = fork();

if (pid ==0)
exec(...);

else
wait(pid);

fork

A
I

pid = fork();

if (pid ==0)
exec(...);

else
wait(pid);

child

pid = fork();

if (pid ==0)
exec(...);

else
wait(pid);

parent

exec main () {
N
7
}
wait N
/
Colorado State University

C Program Forking Separate Process

#include {sys!t}rpes h> <sys/types.h> definitions of derived types
#include <stdio.h= <unistd.h> POSIX API

#include <unistd.h>

int main()

{

pid.t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL) ;

}

else { /* parent process */
/* parent will wait for the child to complete */

wait (NULL);

printf("Child Complete"); execlp(3) - Linux man page
} http://linux.die.net/man/3/execlp
return 0;

} rado State University

e

http://linux.die.net/man/3/execlp

Forking PIDs

#include <sys/types.h>

#include <stdio.h>
#include <unistd.h>

int main(){

return O;

}
15

Ys-MacBook-Air:ch3 ymalaiya$./newproc-posix_m
| am the parent with PID 494, my parent is 485, my child is 496
| am the child 0, my PID is 496

DateClient.java Newproc-posix_m
pid_t cid;

Child Complete
/* fork a child process */ Ys-MacBook-Air:ch3 ymalaiya$
cid = fork();

if (cid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed\n");
return 1;
}
else if (cid == 0) { /* child process */
printf("l am the child %d, my PID is %d\n", cid, getpid());
execlp("/bin/Is","Is",NULL);
}
else { /* parent process */
/* parent will wait for the child to complete */
printf("l am the parent with PID %d, my parent is %d, my child is %d\n",getpid(), getppid(), cid);
wait(NULL);

printf("Child Complete\n");

See Self_exercise in Tea ms httDS://WWW.tutoria|SDOint.com/C0mDi|e c_online.php

Colorado State University

https://www.tutorialspoint.com/compile_c_online.php

16

Wait/waitpid () allows caller to suspend execution
until child’s status is available
Process status availability

— Generally, after termination
— Or if process is stopped

pid_t waitpid(pid_t pid, int *status, int options);
The value of pid can be:

— 0 wait for any child process with same process group ID
(perhaps inherited)

— >0 wait for child whose process group ID is equal to the
value of pid

— -1 wait for any child process (equi to wait ())
Status: where status info needs to be saved

Colorado State University

17

Linux: fork ()

e Search for man fork()
o http://man7.org/linux/man-pages/man2/fork.2.html

NAME fork - create a child process
SYNOPSIS #include <unistd.h>
pid_t fork(void);
DESCRIPTION fork() creates a new process by duplicating the calling
process. The new process is referred to as the child process. ...
The child process and the parent process run in separate memory spaces...

The child process is an exact duplicate of the parent process except for the
following points:

RETURN VALUE On success, the PID of the child process is returned in the
parent, and O is returned in the child. On failure, -1 is returned in the

parent, no child process is created, and errno is set appropriately.
EXAMPLE See pipe(2) and wait(2).

errno is a global variable in errno.h

Colorado State University

http://man7.org/linux/man-pages/man2/fork.2.html

Process Group ID

18

Process group is a collection of related
processes

Each process has a process group 1D

Process group leader?

— Process with pid equal to pgid

A process group has an associated controlling
terminal, usually the user’s keyboard

— Control-C: sends interrupt signal (SIGINT) to all
processes in the process group

— Control-Z: sends the suspend signal (SIGSTOP) to
all processes in the process group

Applies to foreground processes: those interacting

With the terminal
Colorado State University

Process Groups

19

A child Inherits parent’s process group ID. Parent or
child can change group ID of child by using setpgid.

By default, a Process Group comprises:

 Parent (and further ancestors)

* Siblings

e Children (and further descendants)

A process can only send signals to members of its
process group

e Signals are a limited form of inter-process communication
used in Unix.

* Signals can be sent using system call
— intkill(pid t pid, int sig);

Colorado State University

http://man7.org/linux/man-pages/man2/kill.2.html

Process Termination

* Process executes last statement and then asks
the operating system to delete it using the
exit () system call.

— Returns status data from child to parent (viawait ())
— Process’ resources are deallocated by operating
system

* Parent may terminate the execution of children
processes usingthekill() system call.
Some reasons for doing so:

— Child has exceeded allocated resources
— Task assigned to child is no longer required

— The parent is exiting and the operating systems does
not allow a child to continue if its parent terminates

kill(child_pid,SIGKILL);

Colorado State University

20

Process Termination

 Some operating systems do not allow child to exists if its
parent has terminated. If a process terminates, then all its
children must also be terminated.

— cascading termination. All children, grandchildren, etc. are
terminated.

— The termination is initiated by the operating system.

* The parent process may wait for termination of a child
process by using the wait () system call. The call returns
status information and the pid of the terminated process

pid = wait(&status);

* If no parent waiting (did not invoke wait ()) processis a
zombie

* If parent terminated without invoking wait, processis an
orphan (it is still running, reclaimed by init)

Zombie: a process that has completed execution (via
the exit system call) but still has an entry in the process

table
Colorado State University

21

22

Multi-process Program Ex — Chrome Browser

e Early web browsers ran as single process

— If one web site causes trouble, entire browser can hang or
crash

* Google Chrome Browser is multiprocess with 3
different types of processes:

— Browser process manages user interface, disk and
network |/O
— Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website
opened
* Runsin sandbox restricting disk and network I/O, minimizing
effect of security exploits

— Plug-in process for each type of plug-in

8no @'ﬂ\ﬁley::ﬁp@.raﬂug System Cor * @0 BBC - Homepage ® E The New York Times - Breal FGoogte Chrome = The web | % \| ..

& =2 C () www.google.c chrome.ﬁntl,I'en,"ma*,l'download—mac.html?brand=¢l(2 / b §
@ chrome md Features / | English :)
Each tab represents a separate process ° °
o .- teUniversity

Multitasking

Colorado State University

23

Cooperating Processes

* Independent process cannot affect or be
affected by the execution of another process

* Cooperating process can affect or be affected
by the execution of another process

* Advantages of process cooperation
— Information sharing
— Computation speed-up
— Modularity

— Convenience

y Colorado State University

Interprocess Communication

25

Processes within a system may be independent or
cooperating

Cooperating process can affect or be affected by other
processes, including sharing data
Reasons for cooperating processes:

— Information sharing

— Computation speedup

— Modularity

— Convenience

Cooperating processes need interprocess communication
(IPC)

Two models of IPC
— Shared memory
— Message passing

Colorado State University

Producer-Consumer Problem

e Common paradigm for cooperating
processes, producer process produces
information that is consumed by a consumer
process

— unbounded-buffer places no practical limit on the
size of the buffer

— bounded-buffer assumes that there is a fixed
buffer size

Why do we need a buffer (shared memory region)?
- The producer and the consumer process operate at their own speeds. Items wait in the buffer when consumer is slow.

Where does the bounded buffer “start”?
- Itis circular

e Colorado State University

Bounded-Buffer — Shared-Memory Solution

e Shared data
#define BUFFER SIZE 8

typedef struct { * in points to the next free position in the buffer
e out points to the first full position in the buffer.
) item; » Bufferis empty when in == out;
e Bufferis full when
item butfer [BUFFER _SIZE]; ((in + 1) % BUFFER SIZE) == out. (Circular buffer)
int in = 0; e This scheme can only use BUFFER_SIZE-1
int out = 0;
elements
Out In
0 1 2 3 4 5 6 7

(2+1)%8 =3 but (7+1)%8 =0

Colorado State University

27

Bounded-Buffer — Producer

item next_produced;
while (true) {
/* produce an item in next produced */
while (((in + 1) % BUFFER_SIZE) == out)
; /* do nothing */
buffer[in] = next_produced,;
in = (in + 1) % BUFFER_SIZE;

Out In

Colorado State University

28

Bounded Buffer — Consumer

item next consumed;

while (true) {
while (in == out)
; /* do nothing */
next consumed = buffer[out];
out = (out + 1) % BUFFER SIZE;

/* consume the item in next consumed */

Out In
' '
0 1 2 3 4 5 6 7

Colorado State University

29

30

Interprocess Communication — Shared Memory

Each process has its own private address
space.

An area of memory shared among the
processes that wish to communicate

The communication is under the control of Onl) one brocess
the user processes, not the operating system. [

shared memory

Major issue is to provide mechanism that w ata time
allow the user processes to synchronize#fiei
actions when they access shared memory.

— Synchronization is discussed in great details in a
later Chapter.

Example soon.

Colorado State University

Interprocess Communication — Message Passing

31

Mechanism for processes to communicate
and to synchronize their actions

Message system — processes communicate
with each other without resorting to shared

variables

IPC facility provides two operations:
— send(message)
— receive(message)

The message size is either fixed or variable

Colorado State University

Message Passing (Cont.)

* |If processes P and Q wish to communicate, they need
to:

— Establish a communication link between them
— Exchange messages via send/receive

* Implementation issues:
— How are links established?
— Can alink be associated with more than two processes?

— How many links can there be between every pair of
communicating processes?

— What is the capacity of a link?

— |Is the size of a message that the link can accommodate
fixed or variable?

— Is a link unidirectional or bi-directional?

Colorado State University

32

Message Passing (Cont.)

* Implementation of communication link
— Physical:

e Shared memory
e Hardware bus
* Network

— Logical: Options (details next)
* Direct (process to process) or indirect (mail box)
* Synchronous (blocking) or asynchronous (non-blocking)
» Automatic or explicit buffering

Colorado State University

33

Direct Communication

* Processes must name each other explicitly:

— send (P message) — send a message to process P

— receive(Q, message) — receive a message from
process Q

* Properties of communication link
— Links are established automatically

— A link is associated with exactly one pair of
communicating processes

— Between each pair there exists exactly one link

— The link may be unidirectional, but is usually bi-
directional

Colorado State University

35

Indirect Communication

 Messages are directed and received from
mailboxes (also referred to as ports)
— Each mailbox has a unique id
— Processes can communicate only if they share a mailbox

* Properties of communication link

— Link established only if processes share a common
mailbox

— A link may be associated with many processes

— Each pair of processes may share several communication
links

— Link may be unidirectional or bi-directional

Colorado State University

36

Indirect Communication

37

* QOperations

— create a new mailbox (port)
— send and receive messages through mailbox
— destroy a mailbox

* Primitives are defined as:
send(A, message) — send a message to mailbox A

receive(A, message) — receive a message from
mailbox A

Colorado State University

Indirect Communication

38

* Mailbox sharing
— P, P,, and P; share mailbox A
— P, sends; P, and P; receive

— Who gets the message?

e Possible Solutions

— Allow a link to be associated with at most two
processes

— Allow only one process at a time to execute a
receive operation

— Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

Colorado State University

39

Synchronization(blocking or not)

 Message passing may be either blocking or non-

blocking

* Blocking is termed synchronous

— Blocking send -- sender is blocked until message is received

— Blocking receive -- receiver is blocked until a message is
available

* Non-blocking is termed asynchronous

— Non-blocking send -- sender sends message and continues

— Non-blocking receive -- the receiver receives:
A valid message, or
Null message

Different combinations possible
If both send and receive are blocking, we have a rendezvous.
Producer-Consumer problem: Easy if both block

Colorado State University

Examples of IPC Systems

OSs support many different forms of IPC*. We will look at
two of them

 Shared Memory
* Pipes

* Linux kernel supports: Signals, Anonymous Pipes, Named Pipes or FIFOs,
SysV Message Queues, POSIX Message Queues, SysV Shared memory, POSIX
Shared memory, SysV semaphores, POSIX semaphores, FUTEX locks, File-
backed and anonymous shared memory using mmap, UNIX Domain Sockets,
Netlink Sockets, Network Sockets, Inotify mechanisms, FUSE subsystem, D-Bus
subsystem

Colorado State University

40

	Slide 1
	Slide 2
	Slide 3: Diagram of Process State
	Slide 4: CPU Switch From Process to Process
	Slide 5: Representation of Process Scheduling
	Slide 6: Context Switch
	Slide 7: Processes creation & termination
	Slide 8: Process Creation
	Slide 9: A Tree of Processes in Linux
	Slide 10: Process Creation (Cont.)
	Slide 11: Fork () to create a child process
	Slide 12: Process Management System Calls
	Slide 13: UNIX Process Management
	Slide 14: C Program Forking Separate Process
	Slide 15: Forking PIDs
	Slide 16: wait/waitpid
	Slide 17: Linux: fork ()
	Slide 18: Process Group ID
	Slide 19: Process Groups
	Slide 20: Process Termination
	Slide 21: Process Termination
	Slide 22: Multi-process Program Ex – Chrome Browser
	Slide 23: Multitasking
	Slide 24: Cooperating Processes
	Slide 25: Interprocess Communication
	Slide 26: Producer-Consumer Problem
	Slide 27: Bounded-Buffer – Shared-Memory Solution
	Slide 28: Bounded-Buffer – Producer
	Slide 29: Bounded Buffer – Consumer
	Slide 30: Interprocess Communication – Shared Memory
	Slide 31: Interprocess Communication – Message Passing
	Slide 32: Message Passing (Cont.)
	Slide 33: Message Passing (Cont.)
	Slide 35: Direct Communication
	Slide 36: Indirect Communication
	Slide 37: Indirect Communication
	Slide 38: Indirect Communication
	Slide 39: Synchronization(blocking or not)
	Slide 40: Examples of IPC Systems

