CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 24 Lecture 5
OS Structures/Processes

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

HW1 Help Session

Help Session for HW1 on Thursday
5-5:45

CSB 110

Colorado State University

CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
OS Structures

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

Chap2: Operating-System Structures

Objectives:

e Services OS provides to users, processes, and other
systems

e Structuring an operating system

* How operating systems are desighed and
customized and how they boot

ColoradoState University

Viewing Proceses

MAC: look at processes. Launchpad>0Other>Activity Monitor
Activity Monitor User Guide> CPU, Process, threads, PID etc.
Info about processes.

Click a column

Click to quit a heading to sort Search for a
process. the list. process.
o0 e nlct,w'ty I\:1"onilor @~ CPU Memory Energy Disk Network Q .
e Windows: Open Task Manager.
Process Name % CPU CPU Time Threads Idle Wake Ups % GPU GPU Time PID User
WindowServer 22,0 2:23:52.20 14 59 5.6 7:46.00 144 _windowserver
. Activity Monitor 10.8 19:22.70 5 2 0.0 0.00 a7a2 julietalma
M liveon-agent 6.6 5:53.21 13 (1] 0.0 0.00 3186 julietalma
kernel_task 6.3 332218 224 338 0.0 0.00 0 root
ke Messages 45 21:33.69 4 53 0.0 0.00 3534 julietalma
sysmond 31 18:20.42 3 o 0.0 0.00 363 root
ScreensharingAgent 2.0 2:06.90 6 1 18.4 1:30.99 7426 julietalma
B metermaticuploader 19 1:28.40 [] 0.0 0.00 3253 julietalma
corebrightnessd 12 459 [23 0.0 0.00 139 root
launchservicesd 1.0 1:58.11 -] o 0.0 0.00 14 root
ACExtension 0.7 6.75 5 4 0.0 0.00 7568 julietalma
teed 07 35.64 3 o 0.0 0.00 181 root
launchd.development 06 2:21.40 4 o 0.0 0.00 1 root
screensharingd 0.6 47.59 7] 0.0 0.00 7425 root
i SSMenuAgent 0.5 1:03.42 5 3 0.0 0.00 4272 julietalma
loginwindow 0.5 53.89 4] 0.0 0.00 153 Julietalma
powermetrics 04 2376 1 o 00 0.00 3250 root
trustd 0.4 1:20.22 2 o 0.0 0.00 174 root
System 3.94% CPU LOAD Threads: 1,896
User: 5.33% Processes: 561
Idle: 90.73%

See information about

he number of open ° °
E)rocesses and tﬁreads.)lOl‘adO State l]nwerSIt)’

https://support.apple.com/guide/activity-monitor/welcome/mac
https://support.apple.com/guide/activity-monitor/view-information-about-processes-actmntr1001/mac
https://www.digitalcitizen.life/task-manager-details/

Shell Command Interpreter

A bash session

® [] 2y ymalaiya — -bash — 81x35

Last login: Sat Aug 27 22:09:08 on ttys0@@
Ys-MacBook-Air:~ ymalaiya$ echo $@

-bash

Ys-MacBook-Air:~ ymalaiya$ pwd

/Users/ymalaiya

Ys-MacBook-Air:~ ymalaiya$ ls

270 Desktop Downloads Music
Applications Dialcom Library Pictures
DLID Books Documents Movies Public

Ys-MacBook-Air:~ ymalaiya$ w
22:14 wup 1:12, 2 users, load averages: 1.15 1.25 1.27

USER TTY FROM LOGIN@ IDLE WHAT
ymalaiya console - 21:02 1:11 -
|ymalaiya s000 - 22:14 - w
Ys-MacBook-Air:~ ymalaiya$ ps

PID TTY TIME CMD

594 ttys000 0:00.02 -bash

Ys-MacBook-Air:~ ymalaiya$ iostat 5
disk@ cpu load average
KB/t tps MB/s wus sy id Im 5m 15m

36.76 17 .60 5 3 92 1.42 1.31 1.28
~C
Ys-MacBook-Air:~ ymalaiya$ ping colostate.edu
PING colostate.edu (129.82.103.93): 56 data bytes
64 bytes from 129.82.103.93: icmp_seq=0 tt1=116 time=46.069 ms
64 bytes from 129.82.103.93: icmp_seq=1 tt1=116 time=41.327 ms
64 bytes from 129.82.103.93: icmp_seq=2 tt1l=116 time=58.673 ms
64 bytes from 129.82.103.93: icmp_seq=3 ttl=116 time=44.75@ ms
64 bytes from 129.82.103.93: icmp_seg=4 tt1l=116 time=48.336 ms
~C
-—— colostate.edu ping statistics ——-
5 packets transmitted, 5 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 41.327/47.831/58.673/5.877 ms
Ys-MacBook-Air:~ ymalaiya$ [

android-sdks

Common bash commands 1/2

pwd

|s -I

cd dirpath
~username

cp f1 di1

mv f1 d1

rm f1 {2

mkdir d1

which x1

mancm help cm

Is > f.ixt

sort < list.txt

Is—I | less

/

print Working directory

Files in the working dir —long format
Change to dirpath dir

This dir , upper, usename’s home, root
Copy f1to dir d1

Move f1 to d1

Remove f1, 2

Create directory d1

Path for executable file x1

Manual entry or help with command cm
Redirect command std output to f.txt, >> to append
Std input from file

Pipe first command into second

Colorado State University

Common bash commands 2/2

echo $((expression))
echo SPATH

echo SSHELL

chmod 755 dir

PS

kill id

cmd &

fgid

ctrl-z followed by bg or fg
w who

ping ipadd

ssh user@host

grep pattern files

Ctrl-c (shows as *C)

Evaluate expression

Show PATH

Show default shell

Change dir permissions to 755
List jobs for current shell, processesin the system
Kill job or process with given id

Start job in background

Bring job id to foreground

Suspend job and put it in background

Who is logged on

Get a ping from ipadd

Connect to host as user

Search for pattern in files

Halt current command

AT P QU G o 4V Qg \vav EE EE YV WuEm v.-.vJ

User Operating System Interface - GUI

User-friendly desktop metaphor interface

Usually mouse, keyboard, and monitor
Icons represent files, programs, actions, etc

Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute
function, open directory (known as a folder)

Invented at Xerox PARC in 1973

Most systems now include both CLI and GUI interfaces

Microsoft Windows is GUI with CLI “command” shell

— Apple Mac 0S X is “Aqua” GUI interface with UNIX kernel

underneath and shells available

— Unix and Linux have CLI with optional GUI interfaces (CDE,

KDE, GNOME etc)

Colorado State University

Touchscreen and Voice Command Interfaces

e Touchscreen interfaces

* Mouse not possible or not desired

N-ISE TO SIGNAL

RobCottingham.com

e Actions and selection based on VOCAL TUNNEL
gestures SYNDROME.
* Virtual keyboard for text entry /\
* \oice user interfaces VUI
* Siri lIOS

* Google Assistant

e Alexa - Amazon

* Cortana - Microsoft

Siri's heartbreaking legacy

Colorado State University

10

Dashboard

!
§

.
.
»
-
-
*

e
.

Finder

-

gy ———
F= e

- I
——7—

Surg goes dusk-cone at MWC 2011

S— — . —

Partcpateg b b
-
- i Yor yoor O
. (SIS AD R

/)
TextEdit

11 Colorado State Universi ty

System Calls

* Programming interface to the services provided by the OS
* Typically written in a high-level language (C or C++)

* Mostly accessed by programs via a high-level Application
Programming Interface (API) rather than direct system call

use

* Three most common APIs are Win32 API for Windows,

POSIX APl for POSIX-based systems (including virtually all
versions of UNIX, Linux, and Mac OS X), and Java API for

the Java virtual machine (JVM)

Note that the system-call names used throughout our
text are generic.

Colorado State University

12

Example of System Calls

e System call sequence to copy the contents of one file
to another file

source file »| destination file

4 Example System Call Sequence N

Acquire input file name
Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally)

.

Colorado State University

13

Example of Standard API

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is

available in UNIX and Linux systems. The API for this function is obtained unistd.h header file provides
from the man page by invoking the command access to the POSIX API
man read

on the command line. A description of this API appears below:

#include =<unistd.h>

ssize t read(int f£d, woid *buf, size t count)
I | | | | |
return function parameters
value name

A program that uses the read () function must include the unistd.hheader
file, as this file defines the ssize t and size t data types (among other
things). The parameters passed to read () are as follows:

® int fd—the file descriptor to be read

® yoid *buf—a buffer where the data will be read into

* size t count—the maximum number of bytes to be read into the

buffer

On a successful read, the number of bytes read is returned. A return value of

0 indicates end of file. If an error occurs, read () returns —1.
Colorado State University

14

System Call Implementation

* The caller need know nothing about how the
system call is implemented

— Just needs to obey APl and understand what OS will do
as a result call

— Most details of OS interface hidden from programmer
by API

* Managed by run-time support library (set of functions built
into libraries included with compiler)

e System call implementation examples:

— ldentified by a number that leads to address of the
routine

— Arguments need to be provided in designated registers,
return value in a register

— Linux x86 64 table, code snippets

Colorado State University

15

http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://www.tutorialspoint.com/assembly_programming/assembly_system_calls.htm

APl — System Call — OS Relationship

user application

open ()
user

)

mode

system call interface

kernel
mode

-

Trap vector
table lookup
to get an
address

16

A
open ()
Implementation
of open ()
system call
return

Colorado State University

Examples of Windows and Unix System Calls

Windows
Process CreateProcess()
Control ExitProcess()

WaitForSingleObject ()

File CreateFile()
Manipulation ReadFile()
WriteFile()
CloseHandle ()
Device SetConsoleMode ()
Manipulation ReadConsole ()
WriteConsole()
Information GetCurrentProcessID()
Maintenance SetTimer ()
Sleep()
Communication CreatePipe()
CreateFileMapping()
MapViewOfFile()
Protection SetFileSecurity()

InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

17

Unix

fork()
exit()
wait()

open()
read()
write()
close()

ioctl()
read()
write()

getpid()
alarm()
sleep()

pipe()
shmget ()
mmap ()

chmod ()
umask ()
chown()

We will mostly use Unix
as an example.

Implementation may be
somewhat different

Colorado State University

Standard C Library Example

e Cprogram invoking printf() library call, which
calls write() system call

#include <stdio.h=
int main {)

{

—— printf ("Greetings"); |=-

return 0,
}

user *
mode
standard C library

kernel
mode
Grite () >

write ()
system call

Colorado State University

18

POSIX

19

POSIX: Portable Operating Systems Interface for

UN IX for system commands Pronounced pahz-icks

— Specifies interface, not implementation

POSIX.1 published in 1988

Final POSIX standard: Joint document

— Approved by IEEE & Open Group End of 2001
— ISO/IEC approved it in November 2002

— Most recent IEEE Std 1003.1-2024 2024

Most OSs are mostly POSIX-compliant

We will use a few POSIX-compliant system
commands

Colorado State University

Example OS: MS-DOS .

20

Single-tasking

Shell invoked when
system booted
Simple method to run
program

— No process created

Single memory space

Loads program into
memory, overwriting
all but the kernel

Program exit -> shell
reloaded

free memory

free memory

command
interpreter

process

kernel

command
interpreter

(@)

At system startup

Colorado State University

kernel

(b)

running a program

Unix <z variant, inherited by
several later OSs

Multitasking

User login -> invoke user’ s choice
of shell

Shell executes fork() system call to
create process

— Executes exec() to load program into
process

— Shell waits for process to terminate
or continues with user commands

Process exits with:
— code =0—-no error
— code > 0 - error code

Colorado State University

Example: XBSD s

process D

free memory

process C

Interpreter

process B

kernel

System Programs 1/4

e System programs provide a convenient environment
for program development and execution. They can be
divided into:

— File manipulation

— Status information sometimes stored in a File modification
— Programming language support

— Program loading and execution

— Communications

— Background services

— Application programs are not systems programs

* Most users view of the operation system is defined
by system programs, not the actual system calls

Colorado State University

22

System Programs 2/4

* Provide a convenient environment for program
development and execution

— Some of them are simply user interfaces to system calls;
others are considerably more complex

* File management - Create, delete, c.opY, rename,
print, dump, list, and generally manipulate files
and directories

e Status information

— Some ask the system for info - date, time, amount of
available memory, disk space, number of users

— Others provide detailed performance, logging, and
debugging information

— Typically, these programs format and print the output to
the terminal or other output devices

— Some systems implement a registry - used to store and
retrieve configuration information

Colorado State University

23

24

System Programs 3/4

File modification
— Text editors to create and modify files
— Special commands to search contents of files or perform
transformations of the text
Programming-language support - Compilers,
assemblers, debuggers and interpreters sometimes
provided

Program loading and execution- Absolute loaders,
relocatable loaders, linkage editors, and overlay-
loaders, debugging systems for higher-level and
machine language

Communications - Provide the mechanism for
creating virtual connections among processes, users,
and computer systems

— Allow users to send messages to one another’ s screens,
browse web pages, send electronic-mail messages, login
remotely, transfer files from one machine to another

Colorado State University

System Programs 4/4

* Background Services

— Launch at boot time
e Some for system startup, then terminate
e Some from system boot to shutdown

— Provide facilities like disk checking, process
scheduling, error logging, printing

— Run in user context not kernel context
— Known as services, subsystems, daemons

* Application programs
— Don’t pertain to system
— Run by users
— Not typically considered part of OS
— Launched by command line, mouse click, finger poke

Colorado State University

25

Operating System Design

* General-purpose OS is very large program
* Various ways to structure ones

— Simple structure — MS-DOS. not modular
— More complex — UNIX.

* Kernel+systems programs
— Layered — an abstraction
— Microkernel —=Mach: kernel is minimal

— hybrid

Tanenbaum-Torvalds debate:
(January 29, 1992).
"LINUX is obsolete".

Colorado State University

26

http://www.oreilly.com/openbook/opensources/book/appa.html

CS370 0OS Ch3 Processes

* Process Concept: a program in execution
* Process Scheduling
* Processes creation and termination

* Interprocess Communication using shared
memory and message passing

Colorado$tate University

28

Process Con

cept

* An operating system executes a variety of
programs:

* Process —a program in execution; process
execution must progress in sequential fashion.
Includes

— The program code, also called “text section”
Current activity including program counter, processor

registers
Stack containing temporary data

* Function parameters, return addresses, local variables
Data section containing global variables

Heap containing memory dynamically allocated during

run time

Colorado State University

Process Concept (Cont.)

29

Program is passive entity stored on disk
(executable file), process is active

— Program becomes process when executable file
loaded into memory

Execution of program started via GUI mouse
clicks, command line entry of its name, etc

One program can be several processes

— Consider multiple users executing the same
program

A process can create child processes

Colorado State University

Process in Memory

max
stack
l This is address space for a
specific process.
T Each process has a
separate address space.
heap
data
text
0

. Colorado State University

Process State

* As a process executes, it changes state
— new: The process is being created
— running: Instructions are being executed

— waiting: The process is waiting for some event to
occur

— ready: The process is waiting to be assighed to a
processor

— terminated: The process has finished execution, but..

Colorado State University

31

Meanwhile, on an ordinary Linux kernel...

what's going on with

these zombie . .

proces:es7 Their parent 1s too busy
: to get any notifications.

Daniel Stori {turnoff.us}

. Colorado State University

Diagram of Process State

admitted interrupt

In the Ready
Queue

I/O or event completion I/O or event wait

Transitions:
Ready to Running: scheduled by scheduler
Running to Ready: scheduler picks another process, back in ready queue

Running to Waiting (Blocked) : process blocks for input/output
Waiting to Ready: I/O or event done

s Colorado State University

Process Control Block (PCB)

Information associated with each process
(also called task control block)
* Process state — running, waiting, etc

process state

* Program counter —location of process number
instruction to next execute
» CPU registers — contents of all process- program counter

centric registers

 CPU scheduling information- priorities, ,
scheduling queue pointers registers

* Memory-management information —
memory allocated to the process

e Accounting information — CPU used,

memory limits

clock time elapsed since start, time : :
it list of open files
e |/O status information —1/O devices
allocated to process, list of open files e o o
iy Colorado State University

CPU Switch From Process to Process

process P,

executing ;L /
h J

executing |
\'4

-

\idle

=

operating system process P,

interrupt or system call

save state into PCB,

reload state from PCB, 1
interrupt or system call

! ¥

save state into PCB;

reload state from PCB,

>idle

executing

~

>idle

35

Colorado State University

36

So far, process has a single thread of
execution

Consider having multiple program
counters per process

— Multiple locations can execute at once
* Multiple threads of control -> threads

Must then have storage for thread details,
multiple program counters in PCB

Coming up in next chapter

Colorado State University

Process Control Block in Linux

Represented by the Cstructure task struct.

Fields may include
pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */
struct task struct *parent; /* this process s parent */
struct list head children; /* this process’ s children */
struct files struct *files; /* list of open files */

struct mm struct *mm; /* address space of this process */

Unlike an array, the elements of a struct can be of different data types

Vi

struct task_struct
process information

/N

struct task_struct
process information

_“

f

current

struct task_struct
process information

S RS

(currently executing proccess)

Colorado State University

Process Scheduling

Colorado State University

38

Process Scheduling

39

Maximize CPU use, quickly switch processes
onto CPU for time sharing

Process scheduler selects among available
processes for next execution on CPU

Maintains scheduling queues of processes
— Job queue —set of all processes in the system on the disk

— Ready queue — set of all processes residing in main
memory, ready and waiting to execute

— Device queues — set of processes waiting for an |I/0
device

— Processes migrate among the various queues

Colorado State University

Ready Queue And Various |I/O Device Queues

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit 0

terminal
unit O

40

queue header

head

PCB,

tail

head

tail

head

tail

A 4

registers

PCB,,

Y

Y

Y

PCB,
i —
registers
PCBg
| —

head

tail

PCBs

head

tail

\

Colorado State University

Queues are fun

€rsl

g 2
E
o O

Representation of Process Scheduling

O Queueing diagram represents queues, resources, flows

_____, ready queue CPU >
l/O queue *&—— /O request &—
time slice :
expired
child fork a
@ child y
interrupt walit for an
OcCcurs interrupt
Assumes a single CPU. Common until recently
o Colorado State University

43

Schedulers

Short-term scheduler (or CPU scheduler) — selects which process should be
executed next and allocates CPU

— Sometimes the only scheduler in a system

— Short-term scheduler is invoked frequently (milliseconds) = (must be
fast)

Long-term scheduler (or job scheduler) —selects which processes should be
brought into the ready queue

— Long-term scheduler is invoked infrequently (seconds, minutes) = (may
be slow)

— The long-term scheduler controls the degree of multiprogramming
Processes can be described as either:

— 1/O-bound process — spends more time doing I/O than computations,
many short CPU bursts

— CPU-bound process — spends more time doing computations; few very
long CPU bursts

Long-term scheduler strives for good process mix

Colorado State University

Multitasking in Mobile Systems

44

Some mobile systems (e.g., early version of iOS) allow
only one process to run, others suspended

In past, user interface limits iOS provided for a

— Single foreground process- controlled via user interface

— Multiple background processes— in memory, running, but not on the
display, and with limits

Newer iOS supports multitasking better. ios 14: picture in
picture
Android runs foreground and background, with fewer
limits

— Background process uses a service to perform tasks

— Service can keep running even if background process is suspended
— Service has no user interface, small memory use.

Colorado State University

	Slide 1
	Slide 2: HW1 Help Session
	Slide 3
	Slide 4
	Slide 5: Viewing Proceses
	Slide 6: Shell Command Interpreter
	Slide 7: Common bash commands 1/2
	Slide 8: Common bash commands 2/2
	Slide 9: User Operating System Interface - GUI
	Slide 10: Touchscreen and Voice Command Interfaces
	Slide 11: The Mac OS X GUI
	Slide 12: System Calls
	Slide 13: Example of System Calls
	Slide 14: Example of Standard API
	Slide 15: System Call Implementation
	Slide 16: API – System Call – OS Relationship
	Slide 17: Examples of Windows and Unix System Calls
	Slide 18: Standard C Library Example
	Slide 19: POSIX
	Slide 20: Example OS: MS-DOS ’81..
	Slide 21: Example: xBSD ‘93 Berkely
	Slide 22: System Programs 1/4
	Slide 23: System Programs 2/4
	Slide 24: System Programs 3/4
	Slide 25: System Programs 4/4
	Slide 26: Operating System Design
	Slide 27
	Slide 28: Process Concept
	Slide 29: Process Concept (Cont.)
	Slide 30: Process in Memory
	Slide 31: Process State
	Slide 32
	Slide 33: Diagram of Process State
	Slide 34: Process Control Block (PCB)
	Slide 35: CPU Switch From Process to Process
	Slide 36: Threads
	Slide 37: Process Control Block in Linux
	Slide 38: Process Scheduling
	Slide 39: Process Scheduling
	Slide 40: Ready Queue And Various I/O Device Queues
	Slide 41: Queues are fun
	Slide 42: Representation of Process Scheduling
	Slide 43: Schedulers
	Slide 44: Multitasking in Mobile Systems

