
1 1

Colorado State University
Yashwant K Malaiya
Fall 2024 Lecture 4

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Today

• Multiprocessors

• OS Operations/Modes

• Storage hierarchy, caches

• OS Services

• Shells/User interfaces

3

Course Notes

• Follow updates and notes on Teams

• Slides, TA Office hour info on website
– Start early to identify question

– Help Session planned Thurs. Sept 5, 4:30 – 5:15 PM, Room?

• IClicker cloud
– Exit poll: Identify1 or 2 concepts you found most challenging

or significant

– IClicker App must be registered and configured properly,
otherwise the scores will not be uploaded in Canvascheck.

– Purpose of iClicker is to automate data collection, and get
feedback

4

Multiprocessors

• Past systems used a single general-purpose
processor
– Most systems have special-purpose processors as well

• Multiprocessor systems were once special, now
are common
– Advantages include:

1. Increased throughput
2. Economy of scale

– Two types:
1. Asymmetric Multiprocessing – each processor is assigned a

specific task. (older systems)
2. Symmetric Multiprocessing – each processor performs all

tasks

5

Multiprocessing Architecture

Multi-chip and multicore

• Multi-chip: Systems containing all chips

– Chassis containing multiple separate systems

• Multi-core

FAQ: How does system decide what information should be in cache?

6

Multiprogramming and multitasking

• Multiprogramming needed for efficiency

– Single user cannot keep CPU and I/O devices busy at all times

– Multiprogramming organizes jobs (code and data) so CPU always has one
to execute

– A subset of total jobs in system is kept in memory

– One job selected and run via job scheduling

– When it has to wait (for I/O for example), OS switches to another job

• Timesharing (multitasking) is logical extension in which CPU switches jobs so
frequently that users can interact with each job while it is running, creating
interactive computing

– Response time should be < 1 second

– Each user has at least one program executing in memory process

– If several jobs ready to run at the same time CPU scheduling

– If processes don’t fit in memory, swapping moves them in and out to run

– Virtual memory allows execution of processes not completely in memory

7

Memory Layout for Multiprogrammed System

8

Operating-System Operations

• “Interrupts” (hardware and software)
– Hardware interrupt by one of the devices

– Software interrupt (exception or trap):
• Software error (e.g., division by zero)

• Request for operating system service

• Other process problems like processes
modifying each other or the operating
system

9

Operating-System Operations (cont.)

• Dual-mode operation allows OS to protect
itself and other system components

– User mode and kernel mode
– Mode bit provided by hardware

• Provides ability to distinguish when system is
running user code or kernel code

• Some instructions designated as privileged, only
executable in kernel mode

• System call changes mode to kernel, return from call
resets it to user

• Increasingly CPUs support multi-mode
operations
– i.e. virtual machine manager (VMM) mode for

guest VMs

called Supervisor mode
 in LC3 processor in P&P book

10

Transition from User to Kernel Mode

• Ex: to prevent a process from hogging resources
– Timer is set to interrupt the computer after some time period
– Keep a counter that is decremented by the physical clock.
– Operating system set the counter (privileged instruction)
– When counter zero generate an interrupt
– Set up before scheduling process to regain control or

terminate program that exceeds allotted time

• Ex: System calls are executed in the kernel mode

11

Multiple protection rings

Newer processors may offer multiple
modes (“protection rings”)

• Ring -1 hypervisor VT-x, SVM

• Ring 0 Kernel

• Rings 1,2 Device drivers

• Ring 3 Applications

To simplify discussions, we will consider
only two. Linux uses only these two.

Note that labels/terminology may vary.

12

Process Management

• A process is a program in execution. It is a unit of work within the
system. Program is a passive entity; process is an active entity.

• Process needs resources to accomplish its task
– CPU, memory, I/O, files

– Initialization data

• Process termination requires reclaim of any reusable resources

• Single-threaded process has one program counter specifying location
of next instruction to execute
– Process executes instructions sequentially, one at a time, until completion

• Multi-threaded process has one program counter per thread

• Typically, system has many processes (some user, some operating
system), running concurrently on one or more CPUs
– Concurrency by multiplexing the CPUs among the processes / threads

A program may
involve multiple

processes.

Our text uses terms job and process interchangeably.

13

Process Management Activities

• Creating and deleting both user and system processes

• Suspending and resuming processes

• Providing mechanisms for
– process synchronization

– process communication

– deadlock handling

The operating system is responsible for the following

activities in connection with process management:

More about these
later

14

Memory & Storage Management

15

K-scale: Amount of information/storage

Amount of info:

• A kilobyte, or KB, is 1,024 (or 210) bytes

• a megabyte, or MB, is 1,0242 (or 220) bytes

• a gigabyte, or GB, is 1,0243 bytes

• a terabyte, or TB, is 1,0244 bytes

• a petabyte, or PB, is 1,0245 bytes

Measures of time

• Milliseconds, microseconds, nanoseconds,
picoseconds: 10-3, 10-6, 10-9, 10-12

Byte (B) = 8 bits (b)
Kibibyte?

16

Performance of Various Levels of Storage

Movement between levels of storage hierarchy can be explicit or implicit
• Cache managed by hardware. Makes main memory appear much

faster.
• Disks are several orders of magnitude slower than Main Memory.

17

General Concept: Caching

• Important principle, performed at many levels in a
computer (in hardware, operating system, software)

• Information in use copied from slower to faster storage
temporarily

• Faster storage (cache) checked first to determine if
information is there
– If it is, information used directly from the cache (fast)

– If not, data copied to cache and used there

• Cache smaller than storage being cached
– Cache management important design problem

– Cache size and replacement policy

• Examples: “cache”, browser cache ..

Cache la
Poudre?

18

Multilevel Caches

• Cache: between registers and main memory

– Cache is faster and smaller than main memory

– Makes main memory appear to be much faster, if the stuff is
found in the cache much of the time

– Hardware managed because of speed requirements

• Multilevel caches
– L1: smallest and fastest of the three (about 4 cycles, 32 KB)

– L2: bigger and slower than L1 (about 10 cycles, 256KB)

– L3: bigger and slower than L2 (about 50 cycles, 8MB)

– Main memory: bigger and slower than L3 (about 150 cycles, 8GB)

• You can mathematically show that multi-level caches
improve performance with usual high hit rates.

19

Memory Management

• To execute a program all (or part) of the instructions must
be in memory

• All (or part) of the data that is needed by the program
must be in memory.

• Memory management determines what is in memory and
when
– Optimizing CPU utilization and computer response to users

• Memory management activities
– Keeping track of which parts of memory are currently being

used and by whom
– Deciding which processes (or parts thereof) and data to

move into and out of memory
– Allocating and deallocating memory space as needed

means Main
Memory here

CPU
scheduling

20

Storage Management

• OS provides uniform, logical view of information
storage
– Abstracts physical properties to logical storage unit - file
– Each medium is controlled by device (i.e., disk drive, tape

drive)
• Varying properties include access speed, capacity, data-

transfer rate, access method (sequential or random)

• File-System management
– Files usually organized into directories
– Access control on most systems to determine who can

access what
– OS activities include

• Creating and deleting files and directories
• Primitives to manipulate files and directories
• Mapping files onto secondary storage
• Backup files onto stable (non-volatile) storage media

21

Mass-Storage Management

• Usually, disks used to store data that does not fit in
main memory or data that must be kept for a “long”
period of time

• Entire speed of computer operation hinges on disk
subsystem and its algorithms

• OS activities
– Free-space management
– Storage allocation
– Disk scheduling (for magnetic disks)

• Some storage need not be fast
– Tertiary storage includes optical storage, magnetic tape
– Still must be managed – by OS or applications
– Varies between WORM (write-once, read-many-times)

and RW (read-write)

22

Migration of data “A” from Disk to Register

• Multitasking environments must be careful to use most
recent value, no matter where it is stored in the storage
hierarchy

• Multiprocessor environment must provide cache coherency
in hardware such that all CPUs have the most recent value in
their cache

• Distributed environment situation even more complex
– Several copies of a datum can exist
– Various solutions covered in Chapter 19 (will not get to it)

24 24

Colorado State University
Yashwant K Malaiya

OS Structures

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

25 25

Chap2: Operating-System Structures

Objectives:

• Services OS provides to users, processes, and other
systems

• Structuring an operating system

• How operating systems are designed and
customized and how they boot

26

OS Services for the User 1/3

• Operating systems provide an environment for execution of
programs and services to programs and users

– User interface - Almost all operating systems have a user
interface (UI).

• Varies between Command-Line (CLI), Graphics User
Interface (GUI), Batch

– Program execution - The system must be able to load a
program into memory and to run that program, end execution,
either normally or abnormally (indicating error)

– I/O operations - A running program may require I/O, which
may involve a file or an I/O device

27

OS services for the User 2/3 (Cont.)

– File-system operations - read and write files and directories,
create and delete them, search them, list file Information,
permission management.

– Communications – Processes may exchange information, on the
same computer or between computers over a network

• via shared memory or through message passing (packets
moved by the OS)

– Error detection – OS needs to be constantly aware of possible
errors

• May occur in the CPU and memory hardware, in I/O devices, in
user program

• For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

28

OS services for system 3/3 (Cont.)

• OS functions for ensuring the efficient resource sharing

– Resource allocation - When multiple users or multiple jobs
running concurrently, resources must be allocated to each of
them

• Many types of resources - CPU cycles, main memory, file
storage, I/O devices.

– Accounting - To keep track of which users use how much and
what kinds of computer resources

– Protection and security - concurrent processes should not
interfere with each other

• Protection involves ensuring that all access to system
resources is controlled

• Security of the system from outsiders requires user
authentication, extends to defending external I/O devices
from invalid access attempts

29

A View of Operating System Services

30

User interfaces

Let us see

• CLI: command line interface

• GUI: graphical user interface

31

User Operating System Interface - CLI

CLI or command interpreter allows direct command
entry

– Fetches a command from user and executes it

– Sometimes implemented in kernel, sometimes by systems
programs

– Sometimes commands built-in, sometimes just names of
programs
• If the latter, adding new features doesn’t require shell modification

– Multiple flavors implemented – shells

Ex:
Windows: command prompt
Linux: bash

32

Shell Command Interpreter

A bash session

33

Common bash commands 1/2

pwd print Working directory

ls -l Files in the working dir –long format

cd dirpath Change to dirpath dir

. .. ~username / This dir , upper, usename’s home, root

cp f1 d1 Copy f1 to dir d1

mv f1 d1 Move f1 to d1

rm f1 f2 Remove f1, f2

mkdir d1 Create directory d1

which x1 Path for executable file x1

man cm help cm Manual entry or help with command cm

ls > f.txt Redirect command std output to f.txt, >> to append

sort < list.txt Std input from file

ls –l | less Pipe first command into second

34

Common bash commands 2/2

echo $((expression)) Evaluate expression

echo $PATH Show PATH

echo $SHELL Show default shell

chmod 755 dir Change dir permissions to 755

jobs ps List jobs for current shell, processes in the system

kill id Kill job or process with given id

cmd & Start job in background

fg id Bring job id to foreground

ctrl-z followed by bg or fg Suspend job and put it in background

w who Who is logged on

ping ipadd Get a ping from ipadd

ssh user@host Connect to host as user

grep pattern files Search for pattern in files

Ctrl-c Halt current command

35

User Operating System Interface - GUI

• User-friendly desktop metaphor interface
– Usually mouse, keyboard, and monitor

– Icons represent files, programs, actions, etc

– Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute
function, open directory (known as a folder)

– Invented at Xerox PARC in 1973

• Most systems now include both CLI and GUI interfaces
– Microsoft Windows is GUI with CLI “command” shell

– Apple Mac OS X is “Aqua” GUI interface with UNIX kernel
underneath and shells available

– Unix and Linux have CLI with optional GUI interfaces (CDE,
KDE, GNOME)

36

Touchscreen Interfaces

• Touchscreen devices
require new interfaces
• Mouse not possible or not desired

• Actions and selection based on
gestures

• Virtual keyboard for text entry

• Voice commands.

37

The Mac OS X GUI

38

System Calls

• What are they?

– Calls to system routines

• How are they implemented?

39

System Calls

• Programming interface to the services provided by the OS

• Typically written in a high-level language (C or C++)

• Mostly accessed by programs via a high-level Application
Programming Interface (API) rather than direct system call
use

• Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (including virtually all
versions of UNIX, Linux, and Mac OS X), and Java API for
the Java virtual machine (JVM)

Note that the system-call names used throughout our
text are generic.

40

Example of System Calls

• System call sequence to copy the contents of one file
to another file

41

Example of Standard API

unistd.h header file provides
access to the POSIX API

read(2) — Linux manual page

https://man7.org/linux/man-pages/man2/read.2.html

42

System Call Implementation

• The caller need know nothing about how the
system call is implemented
– Just needs to obey API and understand what OS will do

as a result call
– Most details of OS interface hidden from programmer

by API
• Managed by run-time support library (set of functions built

into libraries included with compiler)

• System call implementation examples:
– LC-3 Trap x21 (OUT) code in Patt & Patel (see slide 22)

– Identified by a number that leads to address of the
routine

– Arguments provided in designated registers
– Linux x86_64 table, code snippets

In LC3
Traps are
system

calls

https://www.cs.colostate.edu/~cs270/.Fall17/slides/LectureMT2Review.pdf
http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://www.tutorialspoint.com/assembly_programming/assembly_system_calls.htm

43

API – System Call – OS Relationship

Trap
vector

table in
LC3

44

Examples of Windows and Unix System Calls

45

Standard C Library Example

• C program invoking printf() library call, which
calls write() system call

46

POSIX

• POSIX: Portable Operating Systems Interface for
UNIX for system commands Pronounced pahz-icks

• POSIX.1 published in 1988

• Final POSIX standard: Joint document
– Approved by IEEE & Open Group End of 2001

– ISO/IEC approved it in November 2002

– Most recent IEEE Std 1003.1-2017 Edition

• Most OSs are mostly POSIX-compliant

• We will use a few POSIX-compliant system
commands

47

Example OS: MS-DOS ’81..

• Single-tasking
• Shell invoked when

system booted
• Simple method to run

program
– No process created

• Single memory space
• Loads program into

memory, overwriting
all but the kernel

• Program exit -> shell
reloaded

At system startup running a program

48

Example: xBSD ‘93 Berkely

• Unix ‘73 variant, inherited by
several later OSs

• Multitasking
• User login -> invoke user’s choice

of shell
• Shell executes fork() system call to

create process
– Executes exec() to load program into

process
– Shell waits for process to terminate

or continues with user commands

• Process exits with:
– code = 0 – no error
– code > 0 – error code

	Slide 1
	Slide 2: Today
	Slide 3: Course Notes
	Slide 4: Multiprocessors
	Slide 5: Multiprocessing Architecture
	Slide 6: Multiprogramming and multitasking
	Slide 7: Memory Layout for Multiprogrammed System
	Slide 8: Operating-System Operations
	Slide 9: Operating-System Operations (cont.)
	Slide 10: Transition from User to Kernel Mode
	Slide 11: Multiple protection rings
	Slide 12: Process Management
	Slide 13: Process Management Activities
	Slide 14: Memory & Storage Management
	Slide 15: K-scale: Amount of information/storage
	Slide 16: Performance of Various Levels of Storage
	Slide 17: General Concept: Caching
	Slide 18: Multilevel Caches
	Slide 19: Memory Management
	Slide 20: Storage Management
	Slide 21: Mass-Storage Management
	Slide 22: Migration of data “A” from Disk to Register
	Slide 24
	Slide 25
	Slide 26: OS Services for the User 1/3
	Slide 27: OS services for the User 2/3 (Cont.)
	Slide 28: OS services for system 3/3 (Cont.)
	Slide 29: A View of Operating System Services
	Slide 30: User interfaces
	Slide 31: User Operating System Interface - CLI
	Slide 32: Shell Command Interpreter
	Slide 33: Common bash commands 1/2
	Slide 34: Common bash commands 2/2
	Slide 35: User Operating System Interface - GUI
	Slide 36: Touchscreen Interfaces
	Slide 37: The Mac OS X GUI
	Slide 38: System Calls
	Slide 39: System Calls
	Slide 40: Example of System Calls
	Slide 41: Example of Standard API
	Slide 42: System Call Implementation
	Slide 43: API – System Call – OS Relationship
	Slide 44: Examples of Windows and Unix System Calls
	Slide 45: Standard C Library Example
	Slide 46: POSIX
	Slide 47: Example OS: MS-DOS ’81..
	Slide 48: Example: xBSD ‘93 Berkely

