
1 1

Colorado State University
Yashwant K Malaiya

Fall 2024 Lecture 2 Special
Intro to C Programming. V1.2

CS370 Operating Systems

Slides based on
• Columbia, Cornell and other sources

2

C Overview
• C has been and still is widely used.

• Used for writing operation systems.

• First 3 Programming Assignments and many of the

examples will be in C.

• Topics:

– C vs Java

– C compilation, preprocessor

– Data types

– Arrays and strings

– Memory allocation/deallocation

3 22-Aug-24

3

C history
• C

– Dennis Ritchie in late 1960s and early 1970s

– Originally a systems programming language

• make OS portable across hardware platforms

• not necessarily for user applications – which could be written in Fortran or PL/I

• C++

– Bjarne Stroustrup (Bell Labs), 1980s

– object-oriented features

• Java

– James Gosling in 1990s, originally for embedded systems

– object-oriented, like C++

– ideas and some syntax from C

• Python

– created by Guido Van Rossum in the late 1980s

– object-oriented language

– dynamic binding and dynamic typing options

4 22-Aug-24

4

C for Java programmers

• Java is mid-90s high-level OO language

• C is early-70s procedural language

• C advantages:

– Direct access to OS primitives (system calls)

– Fewer library issues – just execute

• C disadvantages:

– language is portable, APIs are not

– memory and “handle” leaks

– preprocessor can lead to obscure errors

5 22-Aug-24

5

C vs. Java

Java C

object-oriented function-oriented

strongly-typed can be overridden

polymorphism (+, ==) very limited (integer/float)

classes for name space (mostly) single name space, file-
oriented

macros are external, rarely
used

macros common
(preprocessor)

layered I/O model byte-stream I/O

6 22-Aug-24

6

C vs. Java
Java C

automatic memory management function calls (C++ has some
support)

no pointers pointers (memory addresses)
common

by-reference, by-value by-value parameters

exceptions, exception handling if (f() < 0) {error}

OS signals

concurrency (threads) library functions

length of array on your own

string as type just bytes (char []), with 0
end

dozens of common libraries OS-defined

7
22-Aug-24

7

Simple C example
#include <stdio.h>

void main(void)

{

 printf(“Hello World. \n \t and you ! \n ”);

 /* print out a message */

 return;

}

$Hello World.
 and you !
$

• #include <stdio.h>

– include header file stdio.h

– # lines processed by pre-processor

– No semicolon at end

– Lower-case letters only – C is case-sensitive

• void main(void){ … } is the only code executed

• printf(“ /* message you want printed */ ”);

• \n = newline, \t = tab

• \ in front of other special characters within printf.

– printf(“Have you heard of \”The Rock\” ? \n”);

8 22-Aug-24

8

The C compiler gcc
• C programs are normally compiled and linked:

– gcc converts foo.c into a.out
– a.out is executed by OS and hardware

• gcc invokes C compiler, translates C code into executable for
some target

• default file name a.out
$ gcc hello.c

$./a.out command to execute

Hello, World!

• Two-stage compilation
– pre-process & compile: gcc –c hello.c
– link: gcc –o hello hello.o names the runnable file hello

• Linking several modules:
gcc –c a.c → a.o
gcc –c b.c → b.o
gcc –o hello a.o b.o

• Using math library
– gcc –o calc calc.c -lm

9
22-Aug-24

9

Numeric data types
type bytes

(typ.)

range

char 1 -128 … 127

short 2 -65536…65535

int, long 4 -2,147,483,648 to 2,147,483,647

long long 8 264

float 4 3.4E+/-38 (7 digits)

double 8 1.7E+/-308 (15 digits)

• Range differs – int is “native” size, e.g., 64 bits on 64-bit machines, but sometimes
int = 32 bits, long = 64 bits

• Also, unsigned versions of integer types

– same bits, different interpretation

• char = 1 “character”, but only true for ASCII and other Western char sets

10 22-Aug-24

10

Remarks on data types
• Range differs – int is “native” size, e.g., 64 bits on 64-

bit machines, but sometimes int = 32 bits, long = 64

bits

• Also, unsigned versions of integer types

– same bits, different interpretation

• char = 1 “character”, but only true for ASCII and other
Western char sets

11 22-Aug-24

11

C preprocessor

• The C preprocessor (cpp) is a macro-processor which

– manages a collection of macro definitions

– reads a C program and transforms it by text substitution

– Example:
#define MAXVALUE 100

#define check(x) ((x) < MAXVALUE)

if (check(i) { …}

becomes
if ((i) < 100) {…}

12 22-Aug-24

12

C preprocessor –file inclusion
#include “filename.h”

#include <filename.h>

• inserts contents of filename into file to be compiled

• “filename” relative to current directory

• <filename> relative to /usr/include

• gcc –I flag to re-define default

• import function prototypes (cf. Java import)

• Examples:
#include <stdio.h>

#include “mydefs.h”

#include “/home/alice/program/defs.h”

13
22-Aug-24

13

#include <stdio.h>

void main(void)

{

 int nstudents = 0; /* Initialization, required */

 printf(“How many students does CSU have ?:”);

 scanf (“%d”, &nstudents); /* Read input */

 printf(“CSU has %d students.\n”, nstudents);

 return ;

}

$ How many students does CSU have ?: 33000 (enter)
CSU has 33000 students.

Example

14 22-Aug-24

14

Comments
• /* any text until */

• // C++-style comments – careful!

• Convention for longer comments:
/*

 * AverageGrade()

 * Given an array of grades, compute the average.

 */

15 22-Aug-24

15

Demo
Compiling and running a multi-file program.

16
22-Aug-24

16

Numeric data types

type bytes

(typ.)

range

char 1 -128 … 127

short 2 -65536…65535

int, long 4 -2,147,483,648 to

2,147,483,647

long long 8 264

float 4 3.4E+/-38 (7 digits)

double 8 1.7E+/-308 (15 digits)

Supports only ASCII characters. Data type size may be machine dependent!

17
22-Aug-24

17

#include <stdio.h>

void main(void)

{

 int i,j = 12; /* i not initialized, only j */

 float f1,f2 = 1.2;

 i = (int) f2; /* explicit: i <- 1, 0.2 lost */

 f1 = i; /* implicit: f1 <- 1.0 */

 f1 = f2 + (int) j; /* explicit: f1 <- 1.2 + 12.0 */

 f1 = f2 + j; /* implicit: f1 <- 1.2 + 12.0 */

}

Type conversion
• Implicit: e.g., s = a (int) + b (char)

– Promotion: char -> short -> int -> …

– If one operand is double, the other is made double

– If either is float, the other is made float, etc.

• Explicit: type casting – (type)

18 22-Aug-24

18

Explicit and implicit conversions
• Implicit: e.g., s = a (int) + b (char)

• Promotion: char -> short -> int -> …

• If one operand is double, the other is made double

• If either is float, the other is made float, etc.

• Explicit: type casting – (type)

• Almost any conversion does something – but not
necessarily what you intended

19 22-Aug-24

19

Enumerated types
• Define new integer-like types as enumerated types:

typedef enum {

 Red, Orange, Yellow, Green, Blue, Violet

} Color;

enum weather {rain, snow=2, sun=4};

• look like C identifiers (names)

• are listed (enumerated) in definition

• treated like integers
– can add, subtract – even color + weather

20 22-Aug-24

20

Data objects
• Every data object in C has

– a name and data type (specified in definition)

– an address (its relative location in memory)

– a size (number of bytes of memory it occupies)

– visibility (which parts of program can refer to it)

– lifetime (period during which it exists)

• all C data objects have a fixed size over their lifetime

– except dynamically created objects

• size of object is determined when object is created.

– global data objects at compile time (data)

– local data objects at run-time (stack)

– dynamic data objects by programmer (heap)

21

Memory Usage

Global variables:

• Characteristic: declared outside any function.

• Space allocated statically before program execution.

• Initialization done before program execution if necessary also.

• Cannot deallocate space until program finishes.

• Name has to be unique for the whole program (C has flat

name space).

22

Memory Usage

• Local variables:

• Characteristic: are declared in the body of a function.

• Space allocated when entering the function (function call).

• Initialization before function starts executing.

• Space automatically deallocated when function returns:

• – Attention: referring to a local variable (by means of a pointer for

example) after the function returned can have unexpected results.

• Names have to be unique within the function only.

23 22-Aug-24

23

Data objects and pointers
• The memory address of a data object, e.g., int x

– can be obtained via &x

– has a data type int * (in general, type *)

– has a value which is a large (4/8 byte) unsigned integer

– can have pointers to pointers: int **

• The size of a data object, e.g., int x

– can be obtained via sizeof x or sizeof(x)

– has data type size_t, but is often assigned to int (bad!)

– has a value which is a small(ish) integer

– is measured in bytes

24 22-Aug-24

24

Data objects and pointers

• Every data type T in C/C++ has an associated pointer
type T *

• A value of type * is the address of an object of type T

• If an object int *xp has value &x, the expression
*xp dereferences the pointer and refers to x, thus has
type int

&x 42

xp x

int * int

25 22-Aug-24

25

Data objects and pointers

• If p contains the address of a data object, then *p
allows you to use that object

• *p is treated just like normal data object
int a, b, *c, *d;

d = 17; / BAD idea */

a = 2; b = 3; c = &a; d = &b;

if (*c == *d) puts(“Same value”);

*c = 3;

if (*c == *d) puts(“Now same value”);

c = d;

if (c == d) puts (“Now same address”);

26 22-Aug-24

26

void pointers

• Generic pointer

• Unlike other pointers, can be assigned to any other
pointer type:

void *v;

char *s = v;

• Acts like char * otherwise:

v++, sizeof(*v) = 1;

27 22-Aug-24

27

Arrays

• Arrays are defined by specifying an element type and
number of elements
– int vec[100];

– char str[30];

– float m[10][10];

• For array containing N elements, indexes are 0..N-1

• Stored as linear arrangement of elements

• Often similar to pointers

28 22-Aug-24

28

Arrays
• C does not remember how large arrays are (i.e., no length

attribute)

• int x[10]; x[10] = 5; may work (for a while)

• In the block where array A is defined:
– sizeof A gives the number of bytes in array

– can compute length via sizeof A /sizeof A[0]

• When an array is passed as a parameter to a function
– the size information is not available inside the function

– array size is typically passed as an additional parameter
• PrintArray(A, VECSIZE);

– or as part of a struct (best, object-like)

– or globally
• #define VECSIZE 10

29 22-Aug-24

29

Arrays
• Array elements are accessed using the same syntax as

in Java: array[index]

• Example (iteration over array):
int i, sum = 0;

...

for (i = 0; i < VECSIZE; i++)

 sum += vec[i];

• C does not check whether array index values are
sensible (i.e., no bounds checking)
– vec[-1] or vec[10000] will not generate a compiler

warning!

– if you’re lucky, the program crashes with
Segmentation fault

30 22-Aug-24

30

Arrays

• C references arrays by the address of their first element

• array is equivalent to &array[0]

• can iterate through arrays using pointers as well as
indexes:
int *v, *last;

int sum = 0;

last = &vec[VECSIZE-1];

for (v = vec; v <= last; v++)

 sum += *v;

31
22-Aug-24

31

Arrays - example

#include <stdio.h>

void main(void) {

 int number[12]; /* 12 cells, one cell per student */

 int index, sum = 0;

 /* Always initialize array before use */

 for (index = 0; index < 12; index++) {

 number[index] = index;

 }

 /* now, number[index]=index; will cause error:why ?*/

 for (index = 0; index < 12; index = index + 1) {

 sum += number[index]; /* sum array elements */

 }

 return;

}

32 22-Aug-24

32

• In Java, strings are regular objects

• In C, strings are just char arrays with a NUL (‘\0’)
terminator

• “a cat” =

• A literal string (“a cat”)
– is automatically allocated memory space to contain it and the

terminating \0

– has a value which is the address of the first character

– can’t be changed by the program (common bug!)

• All other strings must have space allocated to them by the
program

Strings

a c a t \0

33 22-Aug-24

33

Strings
• We normally refer to a string via a pointer to its first character:

char *str = “my string”;

char *s;

s = &str[0]; s = str;

• C functions only know string ending by \0:
char *str = “my string”;

...

int i;

for (i = 0; str[i] != ‘\0’; i++) putchar(str[i]);

char *s;

for (s = str; *s; s++) putchar(*s);

• Can treat like arrays:
char c;

char line[100];

for (i = 0; i < 100 && line[c]; i++) {

 if (isalpha(line[c]) ...

}

34 22-Aug-24

Advanced Programming
Spring 2002

34

Copying strings

• Copying content vs. copying pointer to content

• s = t copies pointer – s and t now refer to the same

memory location

• strcpy(s, t); copies content of t to s
char mybuffer[100];

...

mybuffer = “a cat”;

• is incorrect (but appears to work!)

• Use strcpy(mybuffer, “a cat”) instead

35 22-Aug-24

35

Example string manipulation
#include <stdio.h>

#include <string.h>

int main(void) {

 char line[100];

 char *family, *given, *gap;

 printf(“Enter your name:”); fgets(line,100,stdin);

 given = line;

 for (gap = line; *gap; gap++)

 if (isspace(*gap)) break;

 *gap = ‘\0’;

 family = gap+1;

 printf(“Your name: %s, %s\n”, family, given);

 return 0;

}

36

Memory Allocation and Deallocation(cont.)

Heap variables:

• Characteristic: memory has to be explicitly:

– allocated: void* malloc(int) (similar to new in Java)

– deallocated: void free(void*)

• Memory has to be explicitly deallocated otherwise all the

memory in the system can be consumed (no garbage col-

lector).

• Memory has to be deallocated exactly once, strange behav-

ior can result otherwise.

37

Memory Allocation and Deallocation(ex.)

#include <stdio.h>

#include

<stdlib.h>

int no_alloc_var; /* global variable counting number of

allocations */ void main(void){

int* ptr; /* local variable of type int* */

/* allocate space to hold an int

/ ptr = (int)

malloc(sizeof(int));

no_alloc_var++;

/* check if successfull

*/ if (ptr == NULL)

exit(1); /* not enough memory in the system, exiting */

ptr = 4; / use the memory allocated to store value 4

/ free(ptr); / dealocate memory */

no_alloc_var--;

}

38

Functions
• Arguments can be passed:

– by value: a copy of the value of the parameter handed to the function

– by reference: a pointer to the parameter variable is handed to the function

• Returned values from functions: by value or by reference.

#include <stdio.h>

int sum(int a, int b); /* function declaration or prototype */

int psum(int* pa, int* pb);

void main(void){

int total=sum(2+2,5); /* call function sum with parameters 4 and 5 */

printf("The total is %d.\",total);

}

/* definition of function sum; has to match declaration signature */

int sum(int a, int b){ /* arguments passed by value */

return (a+b); /* return by value */

}

int psum(int* pa, int* pb){ /* arguments passed by reference */

return ((*a)+(*b));

}

39

Why pass by reference?
#include <stdio.h>

void swap(int,

int); void

main(void){

int num1=5,

num2=10;

swap(num1, num2);

printf("num1=%d and num2=%d\n", num1,

num2);

}

void swap(int n1, int n2){ /* pass by

value */

int temp;

temp = n1;

n1 = n2;

n2 = temp;

}

#include <stdio.h>

void swap(int*,

int*); void

main(void){

int num1=5,

num2=10; int*

ptr = &num1;

swap(ptr,

&num2);

printf("num1=%d and num2=%d\n", num1,

num2);

}

void swap(int* p1, int* p2){ /* pass by

reference */

int temp;temp = *p1;

(*p1) = *p2;

(*p2) = temp;

}
$./swaptest

num1=5 and num2=10

Nothing happened!

$./swaptest2

num1=10 and num2=5

CORRECT NOW

$./swaptest2

num1=10 and num2=5

40

Pointer to Function

• Goal: have variables of type function.

• Example:

#include <stdio.h> void

myproc(int d){

... /* do something */

}

void mycaller(void (*f)(int), int param){ f(param);

/* call function f with param */

}

void main(void){

myproc(10); /* call myproc */

mycaller(myproc, 10); /* call myproc using mycaller */

}

41

Demo

• Running a program with dynamic memory allocation

42

Things to remember

• Initialize variables before using, especially pointers.

• Make sure the life of the pointer is smaller or equal to

the life of the object it points to.

– do not return local variables of functions by reference

– do not dereference pointers before initialization or after

deallocation

• C has no exceptions so have to do explicit error
handling.

• Need to do more reading on your own and try some

small programs.

43

Appendix

• For reference purposes

44 22-Aug-24

Advanced Programming
Spring 2002

44

The stdio library
• Access stdio functions by

– using #include <stdio.h> for prototypes

– compiler links it automatically

• defines FILE * type and functions of that type

• data objects of type FILE *
– can be connected to file system files for reading and writing

– represent a buffered stream of chars (bytes) to be written or
read

• always defines stdin, stdout, stderr

45 22-Aug-24

Advanced Programming
Spring 2002

45

The stdio library: fopen(), fclose()

• Opening and closing FILE * streams:
FILE *fopen(const char *path, const char *mode)

– open the file called path in the appropriate mode

– modes: “r” (read), “w” (write), “a” (append), “r+” (read & write)

– returns a new FILE * if successful, NULL otherwise

int fclose(FILE *stream)

– close the stream FILE *

– return 0 if successful, EOF if not

46 22-Aug-24

Advanced Programming
Spring 2002

46

stdio – character I/O

int getchar()

– read the next character from stdin; returns EOF if none

int fgetc(FILE *in)
– read the next character from FILE in; returns EOF if none

int putchar(int c)
– write the character c onto stdout; returns c or EOF

int fputc(int c, FILE *out)
– write the character c onto out; returns c or EOF

47 22-Aug-24

Advanced Programming
Spring 2002

47

stdio – line I/O
char *fgets(char *buf, int size, FILE *in)

– read the next line from in into buffer buf

– halts at ‘\n’ or after size-1 characters have been read

– the ‘\n’ is read, but not included in buf

– returns pointer to strbuf if ok, NULL otherwise

– do not use gets(char *) – buffer overflow

int fputs(const char *str, FILE *out)

– writes the string str to out, stopping at ‘\0’

– returns number of characters written or EOF

48 22-Aug-24

Advanced Programming
Spring 2002

48

stdio – formatted I/O
int fscanf(FILE *in, const char *format, ...)

– read text from stream according to format
int fprintf(FILE *out, const char *format, ...)

– write the string to output file, according to format

int printf(const char *format, ...)

– equivalent to fprintf(stdout, format, ...)

• Warning: do not use fscanf(...); use fgets(str,
...); sscanf(str, ...);

49 22-Aug-24

Advanced Programming
Spring 2002

49

Libraries

• C provides a set of standard libraries for

numerical math
functions

<math.h> -lm

character
strings

<string.h>

character types <ctype.h>

I/O <stdio.h>

50 22-Aug-24

Advanced Programming
Spring 2002

50

The math library

• #include <math.h>

– careful: sqrt(5) without header file may give wrong
result!

• gcc –o compute main.o f.o –lm

• Uses normal mathematical notation:

Math.sqrt(2) sqrt(2)

Math.pow(x,5) pow(x,5)

4*math.pow(x,3) 4*pow(x,3)

51 22-Aug-24

Advanced Programming
Spring 2002

51

Characters
• The char type is an 8-bit byte containing ASCII code values (e.g.,

‘A’ = 65, ‘B’ = 66, ...)

• Often, char is treated like (and converted to) int

• <ctype.h> contains character classification functions:

isalnum(ch) alphanumeric [a-zA-Z0-9]

isalpha (ch) alphabetic [a-zA-Z]

isdigit(ch) digit [0-9]

ispunct(ch) punctuation [~!@#%^&...]

isspace(ch) white space [\t\n]

isupper(ch) upper-case [A-Z]

islower(ch) lower-case [a-z]

52 22-Aug-24

Advanced Programming
Spring 2002

52

Pointer to function

int func(); /*function returning integer*/

int *func(); /*function returning pointer to integer*/

int (*func)(); /*pointer to function returning integer*/

int *(*func)(); /*pointer to func returning ptr to int*/

53 22-Aug-24

Advanced Programming
Spring 2002

53

Function pointers
int (*fp)(void);

double* (*gp)(int);

int f(void)

double *g(int);

fp=f;

gp=g;

int i = fp();

double *g = (*gp)(17); /* alternative */

54
22-Aug-24

Advanced Programming
Spring 2002

54

#include <stdio.h>

void myproc (int d);

void mycaller(void (* f)(int), int param);

void main(void) {

 myproc(10); /* call myproc with parameter 10*/

 mycaller(myproc, 10); /* and do the same again ! */

}

void mycaller(void (* f)(int), int param){

 (*f)(param); /* call function *f with param */

}

void myproc (int d){

 . . . /* do something with d */

}

Pointer to function - example

	Slide 1
	Slide 2: C Overview
	Slide 3: C history
	Slide 4: C for Java programmers
	Slide 5: C vs. Java
	Slide 6: C vs. Java
	Slide 7
	Slide 8: The C compiler gcc
	Slide 9: Numeric data types
	Slide 10: Remarks on data types
	Slide 11: C preprocessor
	Slide 12: C preprocessor –file inclusion
	Slide 13
	Slide 14: Comments
	Slide 15: Demo
	Slide 16: Numeric data types
	Slide 17: Type conversion
	Slide 18: Explicit and implicit conversions
	Slide 19: Enumerated types
	Slide 20: Data objects
	Slide 21: Memory Usage
	Slide 22: Memory Usage
	Slide 23: Data objects and pointers
	Slide 24: Data objects and pointers
	Slide 25: Data objects and pointers
	Slide 26: void pointers
	Slide 27: Arrays
	Slide 28: Arrays
	Slide 29: Arrays
	Slide 30: Arrays
	Slide 31: Arrays - example
	Slide 32: Strings
	Slide 33: Strings
	Slide 34: Copying strings
	Slide 35: Example string manipulation
	Slide 36: Memory Allocation and Deallocation(cont.)
	Slide 37: Memory Allocation and Deallocation(ex.)
	Slide 38: Functions
	Slide 39: Why pass by reference?
	Slide 40: Pointer to Function
	Slide 41: Demo
	Slide 42: Things to remember
	Slide 43: Appendix
	Slide 44: The stdio library
	Slide 45: The stdio library: fopen(), fclose()
	Slide 46: stdio – character I/O
	Slide 47: stdio – line I/O
	Slide 48: stdio – formatted I/O
	Slide 49: Libraries
	Slide 50: The math library
	Slide 51: Characters
	Slide 52: Pointer to function
	Slide 53: Function pointers
	Slide 54: Pointer to function - example

