
1 1

Colorado State University
Yashwant K Malaiya

Fall 2024 L25
Virtualization and Data centers

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Project Notes

• D3: Project Report Due 11/20/2024 Please see updated
requirements. Slides should also be ready by 11/20/2024.

• Presentation schedule (12/2 to 12/5) will be posted later.

• Project Slides for both options need to be posted in Teams
channel Project Slides (8- 10) and Videos 24 hours before
schedule.

• Research Project Videos (7-8 min) should also be posted
there by 24 hours before.

• Development Project Demo schedule (interactive using
Teams) will be available later. Each team should sign up for
one 15-min slot.

https://www.cs.colostate.edu/~cs370/Fall24/assignments/TermPaper.pdf
https://www.cs.colostate.edu/~cs370/Fall24/assignments/TermPaper.pdf

3

Project Notes: Peer Reviews

• Each student will need to view/evaluate

– 2 assigned project reports

– 7 videos/slides for A research projects (Sections 001, 801)

– 3 videos/slides for B Development projects (Sections 001,
801)

Use the review form and evaluation criteria that will be
provided.

4

Some interesting courses

• CS435: Introduction to Big Data (Fall)

• CS456: Modern Cyber-Security

• CS470: Computer Architecture

• CS475: Parallel Programming/Processing (Spring)

• CS457: Computer Networks and the Internet

• CS530: Fault-Tolerant Computing (Spring)

• CS559: Quantitative Security (Fall)

5

Implementation of VMMs

What question do you see here?

• What mode does hypervisor run in? Guest OSs?

• Are Guest OSs aware of hypervisor?

• How is memory managed?

• How do we know what is the best choice? Answers coming up.

6

Type 1 Hypervisors

• Run on top of bare metal

• Guest OSs believe they are running on bare metal, are unaware of
hypervisor
– are not modified

– Better performance

• Choice for data centers

• Consolidation of multiple OSes and apps onto less HW

• Move guests between systems to balance performance

• Snapshots and cloning

• Hypervisor creates runs and manages guest OSes

– Run in kernel mode

– Implement device drivers

– provide traditional OS services like CPU and memory management

• Examples: VMWare esx (dedicated) , Windows with Hyper-V (includes
OS)

7

Type 2 Hypervisors

• Run on top of host OS

• VMM is simply a process, managed by host OS

– host doesn’t know they are a VMM running guests

• poorer overall performance because can’t take
advantage of some HW features

• Host OS is just a regular one

– could have Type 2 hypervisor (e.g. Virtualbox) on native
host (perhaps windows), run one or more guests
(perhaps Linux, MacOS)

https://www.youtube.com/watch?v=nvdnQX9UkMY

8

Full vs Para-virtualization

• Full virtualization: Guest OS is unaware of the
hypervisor. It thinks it is running on bare metal.

• Para-virtualization: Guest OS is modified and
optimized. It sees underlying hypervisor.

– Introduced and developed by Xen
• Modifications needed: Linux 1.36%, XP: 0.04% of code base

– Does not need as much hardware support

– allowed virtualization of older x86 CPUs without binary
translation

– Not used by Xen on newer processors

9

CPU Scheduling

• One or more virtual CPUs (vCPUs) per guest

– Can be adjusted throughout life of VM

• When enough CPUs for all guests
– VMM can allocate dedicated CPUs, each guest much like native

operating system managing its CPUs

• Usually not enough CPUs (CPU overcommitment)
– VMM can use scheduling algorithms to allocate vCPUs

– Some add fairness aspect

• Oversubscription of CPUs means guests may not get CPU
cycles they expect

– Time-of-day clocks may be incorrect

– Some VMMs provide application to run in each guest to fix time-of-
day

10

Memory Management

Memory mapping:

• On a bare metal machine: OS uses page table/TLB to map Virtual page
number (VPN) to Physical page number (PPN) (physical memory is
shared). Each process has its own page table/TLB.

– VPN -> PPN

• VMM: Real physical memory (machine memory) is shared by the OSs.
Need to map PPN of each VM to MPN (Shadow page table)

 PPN ->MPN

11

Memory Management

• VMM: Real physical memory (machine memory) is
shared by the OSs. Need to map PPN of each VM
to MPN (Shadow page table)

 PPN ->MPN

• Where is this done?
– Has to be done by hypervisor type 1. Guest OS knows

nothing about MPN.

– Page Table/TLB updates are trapped to VMM.

 It needs to do VPN->PPN ->MPN.

– It can do VPN->MPN directly (VMware ESX)

12

Virtual Machine (VM) as a software construct

• Each VM is configured with some number of processors,
some amount of RAM, storage resources, and connectivity
through the network ports.

• Once the VM is created it can be activated on like a physical
server, loaded with an operating system and software
solutions, and used just like a physical server.

• Unlike a physical server, VM only sees the resources it has
been configured with, not all of the resources of the
physical host itself.

• The hypervisor facilitates the translation and I/O between
the virtual machine and the physical server.

13

Virtual Machine (VM) as a set of files

• Configuration file describes the attributes of the virtual
machine containing
– server definition,

– how many virtual processors (vCPUs)

– how much RAM is allocated,

– which I/O devices the VM has access to,

– how many network interface cards (NICs) are in the virtual server

– the storage that the VM can access

• When a virtual machine is instantiated, additional files are
created for logging, for memory paging etc.

• Copying a VM produces not only a backup of the data but
also a copy of the entire server, including the operating
system, applications, and the hardware configuration itself

14

Live Migration

Running guest can be moved between systems, without interrupting user
access to the guest or its apps

– for resource management,

– maintenance downtime windows, etc

• Migration from source VMM to target VMM

– Needs to migrate all pages gradually, without
interrupting execution (details in next slide)

– Eventually source VMM freezes guest, sends vCPU’s final
state, sends other state details, and tells target to start
running the guest

– Once target acknowledges that guest running, source
terminates guest

15

Live Migration

• Migration from source VMM to target VMM

– Source establishes a connection with the target

– Target creates a new guest

– Source sends all read-only memory pages to target

– Source starts sending all read-write pages

– Source VMM freezes guest, sends final stuff,

– Once target acknowledge that guest running, source terminates
guest.

16

VIRTUAL APPLIANCES: “shrink-wrapped” virtual machines

• Developer can construct a virtual machine with
– required OS, compiler, libraries, and application code

– Freeze them as a unit … ready to run

• Customers get a complete working package

• Virtual appliances: “shrink-wrapped” virtual machines

• Amazon’s EC2 cloud offers many pre-packaged virtual
appliances examples of Software as a service

• Question: do we really have to include a whole kernel in a
shrink wrapped VM?

17 17

Colorado State University
Yashwant K Malaiya

Back from ICQ

CS370 Operating Systems

18 18

Colorado State University
Yashwant K Malaiya

Fall 2024

CS370 Operating Systems

Containers

Slides based on
• Various sources

19

Linux Containers and Docker

• Linux containers (LXC 2008) are “lightweight” VMs

• Comparison between LXC/docker (2013) and VM

• Containers provide “OS-level Virtualization” vs “hardware level”.

• Containers can be deployed in seconds.

• Very little overhead during execution, even better than Type 1 VMM.

Note

20

VMs vs Containers

VMs Containers (“virtual environment”)

Heavyweight several GB Lightweight tens of MB

Limited performance Native performance

Each VM runs in its own OS All containers share the host OS

Hardware-level virtualization OS virtualization

Startup time in minutes Startup time in milliseconds

Allocates required memory Requires less memory space

Fully isolated and hence more
secure

Process-level isolation, possibly less
secure

21

Container: basis

Linux kernel provides

• “control groups” (cgroups) functionality for a set of processes

–allows allocation and prioritization of resources (CPU, memory, block
I/O, network, etc.) without the need for starting any VM

• “namespace isolation” functionality
–allows complete isolation of an applications' view of the operating

environment including Process trees, networking, user
IDs and mounted file systems.

• Managed by

–Docker (or competitors) Platform: build, share, run containerized apps.

–Kubernetes (or competitors): orchestration platform for managing,
automating, and scaling containerized applications

Docker – podman/buildah Docker swarm – Kubernetes, OPENSHIFT

22

•Standardized packaging for

software and dependencies

• Isolate apps from each other

•Share the same OS kernel

•Works for all major Linux

distributions

•Docker Desktop for Windows uses
Windows-native Hyper-V
virtualization (Win10)

•Containers native to Windows

Server 2016

• Docker: a popular container

management service technology.

Alternatives: Podman etc

What is a container?

Container

23

Some Docker vocabulary

• Docker Image

• The basis of a Docker container. Represents a full application

• Docker Container

• The standard unit in which the application service resides and executes

• Docker Engine

• Creates, ships and runs Docker containers deployable on a physical or
virtual, host locally, in a datacenter or cloud service provider

• Registry Service (Docker Hub(Public) or Docker Trusted
Registry(Private))

• Cloud or server based storage and distribution service for images (can

be pulled or pushed)

• Dockerfile is a text document that contains all the commands a user could

call on the command line to assemble an image using docker build

command.

23

Correspondence: excecutable code:image container:process

24

Some Docker vocabulary: Analogies

Containers have their own jargon. Here are some analogous terms.

Note that some analogies can be questionable.

24

Docker Non-containerized code

What is executed Docker Image executable

Isolation unit Docker Container process

to create what is executed Dockerfile makefile

Docker engine OS/JVM

Registry Service code repository

• Only a high-level look here. For details see documentation and videos.
• Several interrelated technologies. Significant experience needed to gain expertise.

25

Some Docker vocabulary

• Dockerfile is a text document that contains all the commands a user could

call on the command line to assemble an image using docker build

command.

• Ex:

syntax=docker/dockerfile:1
FROM ubuntu:18.04
COPY . /app
RUN make /app
CMD python /app/app.py

Each instruction creates one layer:
• FROM creates a layer from the ubuntu:18.04 Docker image.
• COPY adds files from your Docker client’s current directory.
• RUN builds your application with make.
• CMD specifies what command to run within the container.

26

Docker Volumes

26

• Volumes mount a directory on the host into the container at a specific location

• Can be used to share (and persist) data between containers

•Directory persists after the container is deleted
• Unless you explicitly delete it

• Can be created in a Dockerfile or via CLI

27

Docker Compose: Multi Container Applications

49

Single container

• Build and run one container at a time

• Manually connect containers together

• Must be careful with dependencies and start

up order

Multi-container application

• Define multi container app in compose.yml file

• Single command to deploy entire app

• Handles container dependencies

• Works with Docker Swarm, Networking,

Volumes, Universal Control Plane

28

version: '2' # specify docker-compose version

Define the services/containers to be run
services:
angular: # name of the first service
build: client # specify the directory of the Dockerfile
ports:
- "4200:4200" # specify port forewarding

express: #name of the second service
build: api # specify the directory of the Dockerfile
ports:
- "3977:3977" #specify ports forewarding

database: # name of the third service
image: mongo # specify image to build container from
ports:
- "27017:27017" # specify port forewarding

Docker Compose: Multi Container Applications

29

• Docker technology used for containers and can
deploy single, containerized applications.

• Docker Compose for configuring and starting
multiple Docker containers on the same host.

• Docker swarm is a container orchestration tool

that allows you to run and connect containers on
multiple hosts.

• Kubernetes is a container orchestration tool that is
similar to Docker swarm, but has ease of
automation and ability to handle higher demand.

Terms

30

• docker — — version get the currently installed version of docker
• docker build <path to docker file> build an image from a specified docker file
• docker login login to the docker hub repository

• docker pull <image name> pull images from the docker repository hub.docker.com
• docker push <username/image name>

• docker run -it -d <image name> create a container from an image
• docker stop <container id> stops a running container
• docker kill <container id> kills the container by stopping its execution immediately
• docker rm <container id> delete a stopped container
• docker ps list the running containers

• docker exec -it <container id> bash to access the running container
• docker commit <conatainer id> <username/imagename> creates a new image of

an edited container
• docker images lists all the locally stored docker images

Some Docker Commands

31

Unique features

• Containers run in the user space

• Each container has its own: process space, network interface,
booting mechanism with configuration

• Share kernel with the host

• Can be packaged as Docker images to provide microservices.

32

Monolithic architecture vs microservices

33

Microservices Accessing the Shared Database

33

34

Microservices Characteristics

• Many smaller (fine grained), clearly
scoped services

– Single Responsibility Principle

– Independently Managed

• Clear ownership for each service

– Typically need/adopt the “DevOps” model

• 100s of MicroServices
– Need a Service Metadata Registry

(Discovery Service)

• May be replicated as needed

• A microservice can be updated without
interruption

35

Microservices. Scalability

36 36

Colorado State University
Yashwant K Malaiya

Fall 2024

CS370 Operating Systems

Data Centers &
Cloud Computing

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

37

Data Centers

• Large server and storage farms
– 1000s-100,000 of servers

– Many PBs of data

• Used by
– Enterprises for server applications

– Internet companies
– Some of the biggest DCs are owned by Google, Facebook, etc

• Used for
– Data processing

– Web sites

– Business apps

38

Data Center architecture

Traditional - static
– Applications run on physical servers

– System administrators monitor and manually manage
servers

– Storage Array Networks (SAN) or Network Attached
Storage (NAS) to hold data

Modern – dynamic with larger scale
– Run applications inside virtual machines

– Flexible mapping from virtual to physical resources

– Increased automation, larger scale

39

Data Center architecture

Giant warehouses with:
– Racks of servers

– Storage arrays

– Cooling infrastructure

– Power converters

– Backup generators

Or with containers
– Each container filled with thousands of servers

– Can easily add new containers

– “Plug and play”

– Pre-assembled, cheaper, easily expanded

40

Server Virtualization

Allows a server to be “sliced” into Virtual
Machines

– VM has own OS/applications
– Rapidly adjust resource allocations
– VM migration within a LAN

• Virtual Servers
– Consolidate servers
– Faster deployment
– Easier maintenance

• Virtual Desktops
– Host employee desktops in VMs
– Remote access with thin clients
– Desktop is available anywhere
– • Easier to manage and maintain

41

Data Center Challenges

Resource management
– How to efficiently use server and storage resources?

– Many apps have variable, unpredictable workloads

– Want high performance and low cost

– Automated resource management

– Performance profiling and prediction

Energy Efficiency
– Servers consume huge amounts of energy

– Want to be “green”

– Want to save money

42

Data Center Challenges

Power Efficiency measured as Power Usage Effectiveness

• Power Usage Effectiveness = Total Power / IT Power

• typical: 1.7, Google PUE ~ 1.1)

http://perspectives.mvdirona.com/2008/11/28/CostOfPowerInLargeScaleDataCenters.aspx

43

Power Consumption by Data Centers

44

Economy of Scale

Larger data centers can be cheaper to buy and
run than smaller ones

– Lower prices for buying equipment in bulk

– Cheaper energy rates

– Automation allows small number of sys admins to
manage thousands of servers

– General trend is towards larger mega data centers

– 100,000s of servers

– Has helped grow the popularity of cloud computing

45

Economy of Scale

Resource
Cost in

Medium DC
Cost in

Very Large DC
Ratio

CPU cycle cost 2 picocents < 0.5 picocents

Network $95 / Mbps / month $13 / Mbps / month 7.1x

Storage $2.20 / GB / month $0.40 / GB / month 5.7x

Administration ≈140 servers/admin >1000 servers/admin 7.1x

Pico = 10-3 nano = 10-12

46

Data Center Challenges

Reliability Challenges
Typical failures in a year of a Google data center:

• 20 rack failures (40-80 machines instantly
disappear, 1-6 hours to get back)

• 3 router failures (have to immediately pull traffic
for an hour)

• 1000 individual machine failures

• thousands of hard drive failures

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/people/jeff/sta
nford-295-talk.pdf

47

Capacity provisioning

User has a variable need for capacity. User can choose among

Fixed resources: Private data center

• Under-provisioning when demand is too high, or

• Provisioning for peak

Variable resources:

• Use more or less depending on demand

• Public Cloud has elastic capacity (i.e. way more than what the user
needs)

• User can get exactly the capacity from the Cloud that is actually needed

Why does this work for the provider?

– Varying demand is statistically smoothed out over many users,
their peaks may occur at different times

– Prices set low for low overall demand periods

48

Amazon EC2 Instance types

On-Demand instances

• Users that prefer the low cost and flexibility of Amazon EC2 without any
up-front payment or long-term commitment

• Applications with short-term, spiky, or unpredictable workloads that
cannot be interrupted

Spot Instances (cheap)

• request spare Amazon EC2 computing capacity for up to 90% off

• Applications that have flexible start and end times

Reserved Instances (expensive)

• Applications with steady state usage

• Applications that may require reserved capacity

Dedicated Hosts

• physical EC2 server dedicated for your use.

• server-bound software licenses, or meet compliance requirements

49

Amazon EC2 Prices (samples from their site)

General Purpose - Current Generation Region: US East (Ohio)

instance vCPU ECU
Memory

(GiB)
Instance

Storage (GB)
Linux/UNIX

Usage

t2.nano 1 Variable 0.5 EBS Only
$0.0058 per

Hour

t2.small 1 Variable 2 EBS Only
$0.023 per

Hour

t2.medium 2 Variable 4 EBS Only
$0.0464 per

Hour

m5.4xlarge 16 61 64 EBS Only
$0.768 per

Hour

m4.16xlarge 64 188 256 EBS Only
$3.2 per

Hour

ECU = EC2 Compute Unit (perf), EBS: elastic block store (storage) , automatically replicated

50

Host OS answer

1. In Type 1 VMM, is there a host OS? No. Hypervisor
services the guest Oss.

2. Can a single hypervisor manage VMs with different OSs,
win, linux, MacOS? Yes

51

The cloud Service Models

Service models
• IaaS: Infrastructure as a Service

– infrastructure components traditionally present in an on-premises
data center, including servers, storage and networking hardware

– e.g., Amazon EC2, Microsoft Azure, Google Compute Engine

• PaaS: Platform as a Service
– supplies an environment on which users can install applications and

data sets

– e.g., Google AppEngine, Heroku, Apache Stratos

• SaaS: Software as a Service
– a software distribution model with provider hosted applications

– Microsoft Office365, Amazon DynamoDB, Gmail

52

The Service Models

https://www.bmc.com/blogs/saas-vs-paas-vs-
iaas-whats-the-difference-and-how-to-choose/

https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/

53

Cloud Management models

• Public clouds

- Utility model

- Shared hardware, no control of hardware,

- Self-managed (e.g., AWS, Azure)

• Private clouds:
- More isolated (secure?)

- Federal compliance friendly

- Customizable hardware and hardware sharing

• Hybrid clouds:
- a mix of on-premises, private cloud and third-party, public cloud

services.

- Allows workloads to move between private and public clouds as
computing needs and costs change.

54

Different Regions to Achieve HA

• AWS datacenters is divided into regions and zones,

• that aid in achieving availability and disaster recovery capability.

• Provide option to create point-in-time snapshots to back
up and restore data to achieve DR capabilities.

• The snapshot copy feature allows you to copy data to a
different AWS region.
• This is very helpful if your current region is unreachable or

there is a need to create an instance in another region

• You can then make your application highly available by setting
the failover to another region.

55

Different Regions to Achieve HA

56 56

Colorado State University
Yashwant K Malaiya

Spring 2022

CS370 Operating Systems

Security

Slides based on
• Various sources

57

Security System Architecture

• Networked systems

– Use of firewalls: Organization wide and system level

– Address translation

– Isolation of systems

• Single computing System: OS

– Multiple levels of priviledges

– Isolation of
• processes,

• cgroups,

• virtual machines

	Slide 1
	Slide 2: Project Notes
	Slide 3: Project Notes: Peer Reviews
	Slide 4: Some interesting courses
	Slide 5: Implementation of VMMs
	Slide 6: Type 1 Hypervisors
	Slide 7: Type 2 Hypervisors
	Slide 8: Full vs Para-virtualization
	Slide 9: CPU Scheduling
	Slide 10: Memory Management
	Slide 11: Memory Management
	Slide 12: Virtual Machine (VM) as a software construct
	Slide 13: Virtual Machine (VM) as a set of files
	Slide 14: Live Migration
	Slide 15: Live Migration
	Slide 16: VIRTUAL APPLIANCES: “shrink-wrapped” virtual machines
	Slide 17
	Slide 18
	Slide 19: Linux Containers and Docker
	Slide 20: VMs vs Containers
	Slide 21: Container: basis
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Unique features
	Slide 32: Monolithic architecture vs microservices
	Slide 33: Microservices Accessing the Shared Database
	Slide 34: Microservices Characteristics
	Slide 35: Microservices. Scalability
	Slide 36
	Slide 37: Data Centers
	Slide 38: Data Center architecture
	Slide 39: Data Center architecture
	Slide 40: Server Virtualization
	Slide 41: Data Center Challenges
	Slide 42: Data Center Challenges
	Slide 43: Power Consumption by Data Centers
	Slide 44: Economy of Scale
	Slide 45: Economy of Scale
	Slide 46: Data Center Challenges
	Slide 47: Capacity provisioning
	Slide 48: Amazon EC2 Instance types
	Slide 49: Amazon EC2 Prices (samples from their site)
	Slide 50: Host OS answer
	Slide 51: The cloud Service Models
	Slide 52: The Service Models
	Slide 53: Cloud Management models
	Slide 54: Different Regions to Achieve HA
	Slide 55: Different Regions to Achieve HA
	Slide 56
	Slide 57: Security System Architecture

