
1 1

Colorado State University
Yashwant K Malaiya

Fall 2024 L23
Mass Storage

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Hard and symbolic links

Hard Links:

• Both file names refer to the same inode (and hence
same file)
– Directory entry in /dirA

 ..[12345 filename1]..

– Directory entry in /dirB

 ..[12345 filename2]..

• To create a hard link

 ln /dirA/filename1 /dirB/filename2

• Symbolic link shortcut in windows

– To create a symbolic link

 ln -s /dirA/filenmame1 /dirB/filename3

 File filename3 just contains a pointer

3 3

Colorado State University
Yashwant K Malaiya

Fall 2022. Ch 11

CS370 Operating Systems

Mass Storage

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

4

Moving-head Disk Mechanism

5

Hard Disk Performance

• Average access time = average seek time +
average latency
– For fastest disk 3ms + 2ms = 5ms
– For slow disk 9ms + 5.56ms = 14.56ms

• Average I/O time = average access time +
(amount to transfer / transfer rate) + controller
overhead

• Example: Find expected I/O time to transfer a
4KB block on a 7200 RPM disk with a 5ms
average seek time, 1Gb/sec transfer rate with a
0.1ms controller overhead.
= (5ms + 4.17ms) + 0.1ms + transfer time

• Transfer time = 4KB / 1Gb/s = 4x8K/G = 0.031 ms
• Average I/O time for 4KB block = 9.27ms + .031ms =

9.301ms

Strategy: memorize formula or understand how it works?

Av latency =60/(7200*2)

6

Research Project
Objective: Explore state of technology, recent
developments, current trends in a field

You need to put effort into

• Digging out the information from news reports,
industrial articles/publications, research articles etc. All
sources need to be properly cited.

• Connecting the information found and preparing a
coherent, well focused report. Non-text information
needed: Diagrams, plots, data, tables, flow-charts etc.
Cite the sources.

• Readers (students/TAs/Prof) should find the
presentation and report interesting and informative.

7

Use of Generative AI

• Emergence of generative AI is an exciting development.
That has created a challenge in academics.

• Use of AI (or copying-and-pasting text) is not permitted
in CS370. You must do your own research and
write/organize your own report.

• We will check using automated and manual
approaches and act as needed.

• A few students have expressed their concern about
people in their team using AI generated text, since the
responsibility is collective.

• Send me any thoughts privately.

8

Final Report History

Must be in MS Word (not pdf), and we should be able to
see the change history. It must be created using either

• MS Word with change tracking enabled at the
beginning so that we can see the change history.

• Google Doc with a link in the submissions to the
Google Doc so that we can view the editing history.

9

HDD vs SSD

HDD SSD

WD VelociRaptor OCZ Vertex 3

Storage Capacity 600GB 120GB-360GB

Price for storage 48¢/ GB 2.08$/GB x4

Seek Time/Rotational Speed 7ms/157 MB/s

MTBF 1.4 million hours? 2 million hours?

Sequential Read/Write 1 MB/s 413.5/371.4 MB/s

Random Read 1 MB/s 68.8 MB/s

Random Write 1 MB/s 332.5 MB/s

IOPS 905 60,000 x60

10

Storage Area Network

• Common in large storage environments

• Multiple hosts attached to multiple storage arrays
- flexible

Storage traffic

11

Network-Attached Storage

• Network-attached storage (NAS) is storage made available
over a network rather than over a local connection (such as
a bus)

– Remotely attaching to file systems

• NFS and CIFS (windows) are common protocols

• Implemented via remote procedure calls (RPCs) between
host and storage over typically TCP or UDP on IP network

• iSCSI protocol uses IP network to carry the SCSI protocol

– Remotely attaching to devices (blocks)

Protocol

12

Cloud Storage

Amazon S3 (Simple Storage Service) Issues: Delay, security, availability, cost

https://aws.amazon.com/blogs/storage/from-on-premises-to-aws-hybrid-cloud-architecture-for-network-file-shares/

AWS DataSync and Storage Gateway

https://aws.amazon.com/blogs/storage/from-on-premises-to-aws-hybrid-cloud-architecture-for-network-file-shares/

13

Disk Scheduling

• The operating system is responsible for using
hardware efficiently — for the disk drives, this
means having a fast access time and disk
bandwidth

• Minimize seek time

• Seek time ≈ seek distance (between
cylinders)

• Disk bandwidth is the total number of bytes
transferred, divided by the total time between
the first request for service and the completion
of the last transfer

14

Disk Scheduling (Cont.)

• Note that drive controllers have small buffers
and can manage a queue of I/O requests (of
varying “depth”)

• Several algorithms exist to schedule the
servicing of disk I/O requests

• The analysis is true for one or many platters

• We illustrate scheduling algorithms with a
request queue (cylinders 0-199)

 98, 183, 37, 122, 14, 124, 65, 67

 Head pointer 53 (head is at cylinder 53)

Similar problems: limousine pickup/dropoff, elevator etc.

15

FCFS (First come first served)

Illustration shows total head movement. Cylinder 0 is outermost

Total seek time = (98-53) + …..= 640 cylinders

16

SSTF Shortest Seek Time First

• Shortest Seek Time First selects the request with the
minimum seek time from the current head position

• SSTF scheduling is a form of SJF scheduling; may cause
starvation of some requests

• total head movement of 236 cylinders

17

SCAN

• The disk arm starts at one end of the disk, and
moves toward the other end, servicing requests
until it gets to the other end of the disk, where
the head movement is reversed, and servicing
continues.

• SCAN algorithm Sometimes called the elevator
algorithm

• But note that if requests are uniformly dense,
largest density at the other end of disk and those
wait the longest

• Variation: Look: may not go to the very edge

18

SCAN (Cont.)

Total 53+ 183= 236 cylinders

LOOK will
not go to 0

19

C-SCAN

• Provides a more uniform wait time than
SCAN

• The head moves from one end of the disk to
the other, servicing requests as it goes
– When it reaches the other end, however, it

immediately returns to the beginning of the disk,
without servicing any requests on the return trip

• Treats the cylinders as a circular list that
wraps around from the last cylinder to the
first one

• Total number of cylinders?

20

C-SCAN (Cont.)

21

C-LOOK

• LOOK a version of SCAN, C-LOOK a version
of C-SCAN

• Arm only goes as far as the last request in
each direction, then reverses direction
immediately, without first going all the
way to the end of the disk

• Total number of cylinders?

22

C-LOOK (Cont.)

23

Selecting a Disk-Scheduling Algorithm

• SSTF is common and has a natural appeal

• SCAN and C-SCAN perform better for systems that place a heavy load on the
disk

– Less starvation

• Performance depends on the number and types of requests

• Requests for disk service can be influenced by the file-allocation method

– And metadata layout

• The disk-scheduling algorithm should be written as a separate module of the
operating system, allowing it to be replaced with a different algorithm if
necessary

• Either SSTF or LOOK is a reasonable choice for the default algorithm

• What about rotational latency?

– Difficult for OS to calculate

• How does disk-based queueing effect OS queue ordering efforts?

24 24

Colorado State University
Yashwant K Malaiya

CS370 Operating Systems

Reliability &
RAIDs

• Various sources

25

RAID Techniques

• Striping uses multiple disks in parallel by splitting
data: higher performance (ex. RAID 0)

• Mirroring keeps duplicate of each disk: higher
reliability (ex. RAID 1)

• Block parity: One Disk hold parity block for other
disks. A failed disk can be rebuilt using parity. Wear
leveling if interleaved (RAID 5, double parity RAID 6).

• Ideas that did not work: Bit or byte level level striping (RAID 2, 3) Bit level
Coding (RAID 2), dedicated parity disk (RAID 4).

• Nested Combinations:
– RAID 01: Mirror RAID 0
– RAID 10: Multiple RAID 1, striping
– RAID 50: Multiple RAID 5, striping
– others

Ch 11 + external

26

RAID Structure

• RAID – redundant array of inexpensive disks

– multiple disk drives provides reliability via redundancy

– can increases the mean time to failure

• Mean time to repair – exposure time when another failure could
cause data loss.
– Can be many hours based on size of the disk.

• Mean time to data loss based on above factors. Date is lost if an
additional failure makes it impossible to restore the data.

27

RAID

• Replicate data for availability

– RAID 0: no replication, data split across disks

– RAID 1: mirror data across two or more disks
• Google File System replicated its data on three disks, spread across

multiple racks

– RAID 5: split data across disks, with redundancy to recover
from a single disk failure

– RAID 6: RAID 5, with extra redundancy to recover from two
disk failures

28

Failures and repairs

• If a disk has mean time to failure (MTTF) of
100,000 hour.

– Failure rate is 1/100,000 per hour.

• May be estimated using historical data

• If a disk has a bad data, it may be repaired

– Copy data from a backup

– Reconstruct data using available data and some
invariant property.

• If data cannot be repaired, it is lost.

29

RAID 0: Striping

• Additional disks provide additional storage

• No redundancy

30

RAID 1: Mirroring

• Replicate writes to both disks

• Reads can go to either disk

• If they fail independently,
consider disk with 100,000
hour mean time to failure and
10 hour mean time to repair
– probability that two will fail

within 10 hours =

 (2x10) /100,0002

– Mean time to data loss is

 100,0002/(2x10) = 500x106

 hours, or 57,000 years!

31

Parity bit, Parity block

• Parity bit(s): Extra bits obtained using data bits. Used for
error detection/correction.

• Ex: Parity biti = word0 biti ⊕ .. ⊕ wordn biti

 = bit needed make 1’s even

– Block parity: bit-by-bit parity for all disks

– RAID 4: extra disk to hold parity blocks (not used anymore)

– RAID 5: Parity blocks are distributed among the disks

– RAID 6: Double the number of parity blocks

32

Parity

• Data blocks: Block1, block2, block3,

• Parity block: Block1 xor block2 xor block3 …

10001101 block1

01101100 block2

11000110 block3

00100111 parity block (ensures even number of 1s)

• Can reconstruct any missing block from the others Error-

control coding identifies that a block is bad.

33

RAID 5: Rotating Parity

Time to rebuild depends
on disk capacity and data
transfer rate

Parity blocks Ap, Bp, Cp, Dp
distributed across disks.

34

Parity bit, Parity block

• RAID recovery:

– RAID 1: Copy info from good mirror

– RAID 5,6: rebuild using available data, parity info

• How do we know a disk is corrupted? Use of CRC redundancy

at a lower level.

https://ww1.microchip.com/downloads/en/AppNotes/00730a.pdf
https://ww1.microchip.com/downloads/en/AppNotes/00730a.pdf

35

Read Errors and RAID recovery
• Example: RAID 5

– Each bit has 10-15 probability of being bad.

– 10 one-TB disks, and 1 disk fails

– Read remaining disks to reconstruct missing data

• Probability of an error in reading 9 TB disks =
10-15*total bits =10-15* (9 disks * 8 bits * 1012 bytes/disk)

= 7.2% Thus recovery probability = 92.8%

• Even better:
– RAID-6: two redundant disk blocks parity plus Reed-Solomon code

– Can work even in presence of one bad disk, can recover from 2 disk
failures

– Scrubbing: read disk sectors in background to find and fix latent
errors

36

RAIDs: Nested systems
Nested systems: combine striping with mirroring/parity

• RAID 01: Two RAID 0 systems (with striping) mirrored

• RAID 10: Multiple RAID 1 systems (with mirroring) striped.

37 37

Colorado State University
Yashwant K Malaiya

CS370 Operating Systems

Big Data: HDFS
and map-reduce

• Various sources, mostly external

38

Hadoop: Distributed Framework for Big Data

Big Data attributes:
• Large volume: TB -> PB varies with Kryder’s law: disk density doubles / 13 months

• Geographically Distributed: minimize data movement
• Needs: reliability, analytic approaches

History:
• Google file system 2003 and Map Reduce 2004 programming

lang

• Hadoop to support distribution for the Yahoo search
engine project ‘05, given to Apache Software
Foundation ‘06

• Hadoop ecosystem evolves with Yarn ’13 resource management,
Pig ’10 scripting, Spark ‘14 distributed computing engine. etc.

• The Google file system by Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung (2003)
• MapReduce: Simplified Data Processing on Large Clusters. by Jeffrey Dean and Sanjay Ghemawat (2004)

39

Hadoop: Distributed Framework for Big Data

Recent development.

• Big data: multi-terabyte or more data for an app

• Distributed file system

– Reliability through replication (Fault tolerance)

• Distributed execution
– Parallel execution for higher performance

40

Hadoop: Core components

Hadoop (originally): HDFS + MapReduce

• HDFS: A distributed file system designed to
efficiently allocate data across multiple
commodity machines, and provide self-healing
functions when some of them go down

• MapReduce: A programming framework for
processing parallelizable problems across huge
datasets using a large number of commodity
machines.
• Commodity machines: lower performance per machine, lower cost, perhaps lower reliability compared with

special high-performance machines.

41

Challenges in Distributed Big Data

Common Challenges in Distributed Systems
• Node Failure: Individual computer nodes may

overheat, crash, have hard drive failures, or run out
of memory or disk space.

• Network issues: Congestion/delays (large data volumes),
Communication Failures.

• Bad data: Data may be corrupted, or maliciously or
improperly transmitted.

• Other issues: Multiple versions of client software
may use slightly different protocols from one
another.

• Security

42

HDFS Architecture

Hadoop Distributed File System (HDFS):

• HDFS Block size: 64-128 MB ext4: 4KB

• HDFS file size: “Big”

• Single HDFS FS cluster can span many nodes possibly
geographically distributed. datacenters-racks-blades

• Node: system with CPU and memory

Metadata (corresponding to superblocks, Inodes)

• Name Node: metadata giving where blocks are
physically located

Data (files blocks)

• Data Nodes: hold blocks of files (files are distributed)

43

HDFS Architecture

http://a4academics.com/images/hadoop/Hadoop-Architecture-Read-Write.jpg

Name Node: metadata giving
where blocks are physically located
Data Nodes: hold blocks of files
(files are distributed

Q. What do I need to know? motivation, approaches, concepts

Secondary Name node
If primary fails.

Data is distributed and
replicated.

http://a4academics.com/images/hadoop/Hadoop-Architecture-Read-Write.jpg

44

HDFS Write operation

CERN

https://indico.cern.ch/event/404527/contributions/968835/attachments/1123385/1603232/Introduction_to_HDFS.pdf

Supplies data
block locations

https://indico.cern.ch/event/404527/contributions/968835/attachments/1123385/1603232/Introduction_to_HDFS.pdf

45

HDFS Fault-tolerance

• Disks use error detecting codes to detect
corruption.

• Individual node/rack may fail.

• Data Nodes (on slave nodes):

– data is replicated. Default is 3 times. Keep a copy far
away.

– Send periodic heartbeat (I’m OK) to Name Nodes.
Perhaps once every 10 minutes.

– Name node creates another copy if no heartbeat.

46

HDFS Fault-tolerance

Name Node (on master node) Protection:

• Transaction log for file deletes/adds, etc. Creation
of more replica blocks, when necessary, after a
Data Node failure

• Standby name node: namespace backup
– In the event of a failover, the Standby will ensure that it has read all of

the edits from the Journal Nodes and then promotes itself to the Active
state

– Implementation/delay version dependent

Name Node metadata is in RAM as well as checkpointed on disk.
On disk the state is stored in two files:
• fsimage: Snapshot of file system metadata
• editlog: Changes since last snapshot

47

HDFS Command line interface

• hadoop fs –help

• hadoop fs –ls : List a directory

• hadoop fs mkdir : makes a directory in HDFS

• hadoop fs –rm : Deletes a file in HDFS

• copyFromLocal : Copies data to HDFS from local
filesystem

• copyToLocal : Copies data to local filesystem

• Java code can read or write HDFS files (URI) directly

 https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-common/FileSystemShell.html

HDFS is on top of a local
file system

https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-common/FileSystemShell.html

48

Distributing Tasks

MapReduce Engine:

• JobTracker splits up the job into smaller
tasks(“Map”) and sends it to the TaskTracker
process in each node.

• TaskTracker reports back to the JobTracker node
and reports on job progress, sends partial results
(“Reduce”) or requests new jobs.

• Tasks are run on local data, thus avoiding
movement of bulk data.

• Originally developed for search engine
implementation.

49

Hadoop Ecosystem Evolution

• Hadoop YARN: A framework for job scheduling and cluster resource management , can
run on top of Windows Azure or Amazon S3.

• Apache spark is more general, faster and easier to program than MapReduce.
• Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster

Computing, Berkeley, 2012

	Slide 1
	Slide 2: Hard and symbolic links
	Slide 3
	Slide 4: Moving-head Disk Mechanism
	Slide 5: Hard Disk Performance
	Slide 6: Research Project
	Slide 7: Use of Generative AI
	Slide 8: Final Report History
	Slide 9: HDD vs SSD
	Slide 10: Storage Area Network
	Slide 11: Network-Attached Storage
	Slide 12: Cloud Storage
	Slide 13: Disk Scheduling
	Slide 14: Disk Scheduling (Cont.)
	Slide 15: FCFS (First come first served)
	Slide 16: SSTF Shortest Seek Time First
	Slide 17: SCAN
	Slide 18: SCAN (Cont.)
	Slide 19: C-SCAN
	Slide 20: C-SCAN (Cont.)
	Slide 21: C-LOOK
	Slide 22: C-LOOK (Cont.)
	Slide 23: Selecting a Disk-Scheduling Algorithm
	Slide 24
	Slide 25: RAID Techniques
	Slide 26: RAID Structure
	Slide 27: RAID
	Slide 28: Failures and repairs
	Slide 29: RAID 0: Striping
	Slide 30: RAID 1: Mirroring
	Slide 31: Parity bit, Parity block
	Slide 32: Parity
	Slide 33: RAID 5: Rotating Parity
	Slide 34: Parity bit, Parity block
	Slide 35: Read Errors and RAID recovery
	Slide 36: RAIDs: Nested systems
	Slide 37
	Slide 38: Hadoop: Distributed Framework for Big Data
	Slide 39: Hadoop: Distributed Framework for Big Data
	Slide 40: Hadoop: Core components
	Slide 41: Challenges in Distributed Big Data
	Slide 42: HDFS Architecture
	Slide 43: HDFS Architecture
	Slide 44: HDFS Write operation
	Slide 45: HDFS Fault-tolerance
	Slide 46: HDFS Fault-tolerance
	Slide 47: HDFS Command line interface
	Slide 48: Distributing Tasks
	Slide 49: Hadoop Ecosystem Evolution

