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Disk Structure

Disk can be subdivided into partitions
• Disks or partitions can be RAID protected against 

failure
• Partition can be formatted with a file system. 

Different partitions can host different file systems.
• Entity containing file system known as a volume
• Each volume containing file system also tracks that 

file system’s info in device directory or volume 
table of contents

As well as general-purpose file systems there are 
many special-purpose file systems, frequently all 
within the same operating system or computer
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Directory Structure

Directory: A collection of nodes containing information about all files
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Directory

Files

Both the directory structure and the files reside on disk
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Course notes

• Help Session for HW5 today (Thursday Oct 31) 5 PM in 
CSB 130.

• Multithreaded Virtual Network Simulation with 
producer consumer interaction (Java)

• D2 due today.
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Directory Organization

• All files within a directory must have a 
unique name. But ..

Evolution of directory structure

• Single level directory 

• Two-level directory 

• Tree-structured directories: 

– efficient grouping, searching,  

– absolute or relative path names

• Acyclic graph directories 

– Shared sub-directory, files 
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File System Mounting

• A file system must be mounted before it can be 
accessed

• A unmounted file system is mounted at a mount point

• Merges the file system

root
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File Sharing

• Sharing of files on multi-user systems is desirable

• Sharing may be done through a protection scheme

• On distributed systems, files may be shared across a 
network

• Network File System (NFS) is a common distributed 
file-sharing method

• If multi-user system
– User IDs identify users, allowing permissions and 

protections to be per-user
Group IDs allow users to be in groups, permitting group 
access rights

– Owner of a file / directory

– Group of a file / directory
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Protection: Access Lists and Groups

• Mode of access:  read, write, execute
• Three classes of users on Unix / Linux
     RWX
  a) owner access 7  1 1 1

    RWX
  b) group access 6   1 1 0
     RWX
  c) public access 1   0 0 1

• Ask manager to create a group (unique name), say 
G, and add some users to the group.

• For a particular file (say game) or subdirectory, 
define an appropriate access.

• Attach a group to a file
          chgrp     G    game
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Windows 7 Access-Control List Management
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A Sample UNIX Directory Listing

dir, access, links, owner, group owner, size, last modification time, name 
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Chap 14/15: File System Implementation/internals

• File-System Structure

• File-System Implementation 

• Directory Implementation

• Allocation Methods

• Free-Space Management 

• Efficiency and Performance

• Recovery
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File-System Structure

• File structure
– Logical storage unit
– Collection of related information

• File system resides on secondary storage (disks/SSD)
– Provides user interface to storage, mapping logical to physical
– Provides efficient and convenient access to disk by allowing data 

to be stored, located retrieved easily
– Can be on other media (flash etc), with different file system

• Disk provides in-place rewrite and random access
– I/O transfers performed in blocks of sectors (usually 512 bytes)

• File control block – storage structure -information  about 
a file (“inode” in Linux) inc location of data

• Device driver controls the physical device 
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Layered File System

Device drivers

Logical blocks to 
physical blocks

Files, metadata

File
system

Linear array of 
blocks
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File System Layers (from bottom)

• Device drivers manage I/O devices at the I/O control layer
– Given commands like “read drive1, cylinder 72, track 2, sector 10, into 

memory location 1060” outputs low-level hardware specific commands to 
hardware controller

• “Basic file system” given command like “retrieve block 123” translates to 
device driver
– Also manages memory buffers and caches (allocation, freeing, replacement) 

• Buffers hold data in transit
• Caches hold frequently used data

• File organization module understands files, logical address, and physical 
blocks
- Translates logical block # to physical block #
- Manages free space, disk allocation

• Logical file system manages metadata information
– Translates file name into file number, file handle, location by maintaining file 

control blocks (inodes in UNIX)
– Directory management
– Protection
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File Systems

• Many file systems, sometimes several within an 
operating system

– Each with its own format 

• Windows has FAT (1977), FAT32 (1996), NTFS (1993), xFAT 
(USB/SD cards 2006), ReFS (2012)

• Linux has more than 40 types, with extended file system 
(1992) ext2 (1993), ext3 (2001), ext4 (2008); 

• distributed file systems, GoogleFS (2003), HDFS (2006)

• floppy, CD, DVD Blu-ray ..

– New ones still arriving..
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Data and Metadata

Storage abstraction: 

• File system metadata (size, free lists), 

– File metadata (attributes, disk block maps), 
• Data blocks
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Process, System, Files

• File descriptor table for a process: File descriptor, pointer

• System wide open File Table: r/w status, offset, inode 
number

• Inode table for all files/dirs: indexed by inode numbers    
(unix: ls –ia)
– Inode for a file: file/dir metadata, pointers to blocks
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OS File Data Structures

• Per-process file descriptor table - for each file, 
– pointer to entry in the open file table 

– current position in file (offset) 

– mode in which the process will access the file (r, w, rw) 

– pointers to file buffer

•  Open file table - shared by all processes with an open 
file. 
– open count 

– Inode number

• Inode table – an inode contains
• file attributes, including ownership, protection information, access 

times, ... 

• pointers to location(s) of file in memory

FD: int
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Common File Systems

File System Max File Size Max Partition Size Journaling Notes

Fat32 4 GiB 8 TiB No Commonly supported

ExFAT 128 PiB 128 PiB No Optimized for flash

NTFS 2 TiB 256 TiB Yes For Windows Compatibility

ext2 2 TiB 32 TiB No Legacy

ext3 2 TiB 32 TiB Yes Standard linux filesystem for many years. 

ext4 16 TiB 1 EiB Yes Modern iteration of ext3. 

Journaling: keeps track of changes 
not yet committed: allows recovery
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File-System Implementation: Outline

• In memory/On disk structures

• Partitions, mounting

• Disk Block allocation approaches
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File-System Implementation

Based on several on-disk and in-memory structures.

• On-disk
– Boot control block (per volume) boot block in unix

– Volume control block (per volume) master file table in UNIX

– Directory structure (per file system) file names and pointers to 
corresponding FCBs

– File control block (per file)  inode in unix

• In-memory
– Mount table about mounted volumes

– The open-file tables (system-wide and per process)
– Directory structure cache

– Buffers of the file-system blocks

Volume: logical disk drive, perhaps a partition
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In-Memory File System Structures

Opening a file
fopen( ) returns fid

Reading a file
Inode refers to an individual 
file
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On-disk File-System Structures

1. Boot control block contains info needed by 
system to boot OS from that volume
– Needed if volume contains OS, usually first block 

of volume

2. Volume control block (superblock ext or 
master file tableNTFS) contains volume details
– Total # of blocks, # of free blocks, block size, free 

block pointers or array

3. Directory structure organizes the files
– File Names and inode numbers UFS, master file 

table NTFS

Volume: logical disk drive, perhaps a partition

Super

block

Directory, 

FCBs
File data blocks

Boot

block
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File-System Implementation (Cont.)

4. Per-file File Control Block (FCB or “inode”) 
contains many details about the file

– Indexed using inode number; permissions, size, 
dates UFS (unix file system)

– master file table  using relational DB structures 
NTFS
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When a file is created

The OS

• Allocates a new FCB.

• Update directory

– Reads the appropriate directory into memory,  in 

unix a directory is a file with special type field

– updates it with the new file name and FCB, 

– writes it back to the  disk.
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Partitions and Mounting

• Partition can be a volume containing a file system 
(cooked) or raw – just a sequence of blocks with no 
file system perhaps for swap space

• Boot block can point to boot volume or boot 
loader set of blocks that contain enough code to 
know how to load the kernel from the file system

• Root partition contains the OS, Mounted at boot 
time
– other partitions can hold other OSes, other file systems, 

or be raw

– Other partitions can mount automatically or manually

• At mount time, file system consistency checked
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Virtual File Systems

• Virtual File Systems (VFS) in Unix kernel is an 
abstraction layer on top of specific file systems.

• VFS allows the same system call interface (the API) to 
be used for different types of file systems

• The API (POSIX system calls) is to the VFS interface, 
rather than any specific type of file system

Virtual to specific FS interface



30

NFS (Network File System)

Source

A distributed file system protocol uses the Open Network Computing Remote Procedure Call (ONC 
RPC) system (1984).

https://www.researchgate.net/figure/NFS-software-architecture_fig1_2364749
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File Sharing – Remote File Systems

• Uses networking to allow file system access between 
systems
– Manually via programs like FTP/SFTP

– Automatically, seamlessly using distributed file systems

– Semi automatically via the world wide web

• Client-server model allows clients to mount remote 
file systems from servers
– Server can serve multiple clients

– Client and user-on-client identification is insecure or 
complicated

– NFS is standard UNIX client-server file sharing protocol

– CIFS is standard Windows protocol

– Standard operating system file calls are translated into 
remote calls



32

Block Allocation Methods 

An allocation method refers to how disk blocks 
are allocated for files:

• Contiguous (not common, except for  DVDs 
etc.)

• Linked blocks, Linked guide (e.g., FAT32)

• Indexed  (e.g., ex4)

Actual implementations are more complex than the simple 
ones examined here.
Contrast these with allocation for processes in memory

A disk block can be a physical 
sector. They ae numbered 
using a linear sequence. 
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Contiguous Allocation

File tr: 3 blocks
Starting at block 14
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Allocation Methods - Linked

ii. Linked allocation – each file a linked list of 
blocks

– Each block contains pointer to next block.

– File ends at null pointer

– No external fragmentation, no compaction

Free space management system called when 
new block needed

– Locating a block can take many I/Os and disk 
seeks.

– Improve efficiency by clustering blocks into 
groups but increases internal fragmentation

– Reliability can be a problem, since every block 
in a file is linked.
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Example of Indexed Allocation

Uses Index blocks.
Index block has pointers 
to data blocks for a file.
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Indexed Scheme:  UNIX inodes 

More index blocks than can be addressed with 32-bit file pointer

Assume 4K bytes per block, 32-bit addresses. Ext3 example.

Volume block:
Table with file names
Points to this inode
(file control block)

Common: 12 direct+3. 
Indirect block could 
contain 1024 pointers.
Max file size: k.k.k.4k (triple)+

Ext4: uses extents  
(pointer+ length)
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Performance

• Best method depends on file access type

– Contiguous:  OK when files don’t change much

– Linked: used for smaller file systems  of the past: 
FAT, FAT32

– Indexed more complex, modern

• Single block access could require 0-3 index block reads 
then data block read

• Clustering or disk caching can help improve throughput, 
reduce CPU overhead

• Ex: Ext3, Ext4

Cluster: set of contiguous sectors
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Performance (Cont.)

• Is adding instructions to the execution path to 
save one disk I/O is reasonable?

– AMD Ryzen Threadripper 3990X  (2020) 
2,356,230 MIPS
• http://en.wikipedia.org/wiki/Instructions_per_second

– Typical disk drive at 250 I/Os per second
• 2,356,230 MIPS / 250 = 9425 million instructions during 

one disk I/O 

– Fast SSD drives provide 60,000 IOPS
• 2,356,230 MIPS / 60,000 = 39.3 millions instructions during 

one disk I/O



40

Free-Space Management

• File system maintains free-space list to track available blocks/clusters
– (Using term “block” for simplicity)
– Approaches: i. Bit vector  ii. Linked list iii. Grouping iv. Counting

i. Bit vector or bit map (n blocks)

…

0 1 2 n-1

bit[i] =



 1  block[i] free

0  block[i] occupied

Block number calculation for first free block

(number of bits per word) *(number of 0-value 

words) +  offset of first 1 bit

CPUs may have instructions to return offset within word of first “1” bit

00000000
00000000
00111110
..
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Free-Space Management (Cont.)

Bit map requires extra space
– Example:

  block size = 4KB =  212 bytes

  disk size = 240 bytes (1 terabyte)

  blocks: n = 240/212 = 228 

  Need 228 bits or 32MB for map

  if clusters of 4 blocks -> 8MB of memory

Bit map makes it easy to get contiguous files if 
desired
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Linked Free Space List on Disk

ii. Linked list (free list)

Cannot get contiguous space easily

No waste of space

Superblock Can hold 
pointer to head of 
linked list
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Free-Space Management (Cont.)

• iii. Grouping 
– Modify linked list to store address of next n-1 free 

blocks in first free block, plus a pointer to next block 
that contains free-block-pointers free block pointer blocks in a linked 

list.

• iv. Counting
– Because space is frequently contiguously used and 

freed,  with contiguous-allocation allocation, 
extents, or clustering
• Keep address of first free block and count of following free 

contiguous blocks

• Free space list then has entries containing addresses and 
counts
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UNIX directory structure 

• Contains only file names and the corresponding 
inode numbers an inode uniquely identifies a file

• Use ls – i to retrieve inode numbers of the files in 
the directory 

• Looking up path names in UNIX 

Example: /usr/tom/mbox 

– Lookup inode for /, then for usr, then for tom, then for 
mbox 
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Advantages of directory entries that have name and inode information 

• Changing filename only requires changing the 
directory entry 

• Only 1 physical copy of file needs to be on disk

– File may have several names (or the same name) in 
different directories

• Directory entries are small 

– Most file info is kept in the inode 
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Hard and symbolic links

Hard Links:

• Both file names refer to the same inode (and hence 
same file)
– Directory entry  in /dirA 

 ..[12345  filename1]..

– Directory entry  in /dirB 

 ..[12345  filename2]..

• To create a hard link

 ln  /dirA/filename1  /dirB/filename2

• Symbolic link  shortcut in windows

– To create a symbolic link

 ln  -s /dirA/filenmame1  /dirB/filename3

 File filename3 just contains a pointer 
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File system based on inodes 

Limitations

– File must fit in a single disk partition 

– Partition size and number of files are fixed when 
system is set up 

inode preallocation and distribution 

• inodes are preallocated on a volume

– Even on empty disks % of space lost to inodes 

• Preallocating inodes

– Improves performance 

• Keep file’s data block close to its inode 

– Reduce seek times 
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Checking up on the inodes 

Command: df  -i  (df is for disk filesystem)

Gives inode statistics for the file systems: total, free and used nodes

Command: ls –i (lists inodes of the files in current directory_

Filesystem             Inodes   IUsed    IFree IUse% Mounted on

devtmpfs              2045460     484  2044976    1% /dev

tmpfs                 2053722       1  2053721    1% /dev/shm

tmpfs                 2053722     695  2053027    1% /run

tmpfs                 2053722      16  2053706    1% /sys/fs/cgroup

13320302  diskusage.txt

2408538  Documents/

680003  downloads/
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