
1 1

Colorado State University
Yashwant K Malaiya

Fall 2024 L21
File Systems

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Disk Structure

Disk can be subdivided into partitions
• Disks or partitions can be RAID protected against

failure
• Partition can be formatted with a file system.

Different partitions can host different file systems.
• Entity containing file system known as a volume
• Each volume containing file system also tracks that

file system’s info in device directory or volume
table of contents

As well as general-purpose file systems there are
many special-purpose file systems, frequently all
within the same operating system or computer

3

Directory Structure

Directory: A collection of nodes containing information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk

4

Course notes

• Help Session for HW5 today (Thursday Oct 31) 5 PM in
CSB 130.

• Multithreaded Virtual Network Simulation with
producer consumer interaction (Java)

• D2 due today.

5

Directory Organization

• All files within a directory must have a
unique name. But ..

Evolution of directory structure

• Single level directory

• Two-level directory

• Tree-structured directories:

– efficient grouping, searching,

– absolute or relative path names

• Acyclic graph directories

– Shared sub-directory, files

6

File System Mounting

• A file system must be mounted before it can be
accessed

• A unmounted file system is mounted at a mount point

• Merges the file system

root

7

File Sharing

• Sharing of files on multi-user systems is desirable

• Sharing may be done through a protection scheme

• On distributed systems, files may be shared across a
network

• Network File System (NFS) is a common distributed
file-sharing method

• If multi-user system
– User IDs identify users, allowing permissions and

protections to be per-user
Group IDs allow users to be in groups, permitting group
access rights

– Owner of a file / directory

– Group of a file / directory

8

Protection: Access Lists and Groups

• Mode of access: read, write, execute
• Three classes of users on Unix / Linux
 RWX
 a) owner access 7  1 1 1

 RWX
 b) group access 6  1 1 0
 RWX
 c) public access 1  0 0 1

• Ask manager to create a group (unique name), say
G, and add some users to the group.

• For a particular file (say game) or subdirectory,
define an appropriate access.

• Attach a group to a file
 chgrp G game

9

Windows 7 Access-Control List Management

10

A Sample UNIX Directory Listing

dir, access, links, owner, group owner, size, last modification time, name

11 11

Colorado State University
Yashwant K Malaiya

CS370 Operating Systems

File-system
Implementation

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

12

Chap 14/15: File System Implementation/internals

• File-System Structure

• File-System Implementation

• Directory Implementation

• Allocation Methods

• Free-Space Management

• Efficiency and Performance

• Recovery

13

File-System Structure

• File structure
– Logical storage unit
– Collection of related information

• File system resides on secondary storage (disks/SSD)
– Provides user interface to storage, mapping logical to physical
– Provides efficient and convenient access to disk by allowing data

to be stored, located retrieved easily
– Can be on other media (flash etc), with different file system

• Disk provides in-place rewrite and random access
– I/O transfers performed in blocks of sectors (usually 512 bytes)

• File control block – storage structure -information about
a file (“inode” in Linux) inc location of data

• Device driver controls the physical device

14

Layered File System

Device drivers

Logical blocks to
physical blocks

Files, metadata

File
system

Linear array of
blocks

16

File System Layers (from bottom)

• Device drivers manage I/O devices at the I/O control layer
– Given commands like “read drive1, cylinder 72, track 2, sector 10, into

memory location 1060” outputs low-level hardware specific commands to
hardware controller

• “Basic file system” given command like “retrieve block 123” translates to
device driver
– Also manages memory buffers and caches (allocation, freeing, replacement)

• Buffers hold data in transit
• Caches hold frequently used data

• File organization module understands files, logical address, and physical
blocks
- Translates logical block # to physical block #
- Manages free space, disk allocation

• Logical file system manages metadata information
– Translates file name into file number, file handle, location by maintaining file

control blocks (inodes in UNIX)
– Directory management
– Protection

17

File Systems

• Many file systems, sometimes several within an
operating system

– Each with its own format

• Windows has FAT (1977), FAT32 (1996), NTFS (1993), xFAT
(USB/SD cards 2006), ReFS (2012)

• Linux has more than 40 types, with extended file system
(1992) ext2 (1993), ext3 (2001), ext4 (2008);

• distributed file systems, GoogleFS (2003), HDFS (2006)

• floppy, CD, DVD Blu-ray ..

– New ones still arriving..

18

Data and Metadata

Storage abstraction:

• File system metadata (size, free lists),

– File metadata (attributes, disk block maps),
• Data blocks

19

Process, System, Files

• File descriptor table for a process: File descriptor, pointer

• System wide open File Table: r/w status, offset, inode
number

• Inode table for all files/dirs: indexed by inode numbers
(unix: ls –ia)
– Inode for a file: file/dir metadata, pointers to blocks

20

OS File Data Structures

• Per-process file descriptor table - for each file,
– pointer to entry in the open file table

– current position in file (offset)

– mode in which the process will access the file (r, w, rw)

– pointers to file buffer

• Open file table - shared by all processes with an open
file.
– open count

– Inode number

• Inode table – an inode contains
• file attributes, including ownership, protection information, access

times, ...

• pointers to location(s) of file in memory

FD: int

21

Common File Systems

File System Max File Size Max Partition Size Journaling Notes

Fat32 4 GiB 8 TiB No Commonly supported

ExFAT 128 PiB 128 PiB No Optimized for flash

NTFS 2 TiB 256 TiB Yes For Windows Compatibility

ext2 2 TiB 32 TiB No Legacy

ext3 2 TiB 32 TiB Yes Standard linux filesystem for many years.

ext4 16 TiB 1 EiB Yes Modern iteration of ext3.

Journaling: keeps track of changes
not yet committed: allows recovery

22

File-System Implementation: Outline

• In memory/On disk structures

• Partitions, mounting

• Disk Block allocation approaches

23

File-System Implementation

Based on several on-disk and in-memory structures.

• On-disk
– Boot control block (per volume) boot block in unix

– Volume control block (per volume) master file table in UNIX

– Directory structure (per file system) file names and pointers to
corresponding FCBs

– File control block (per file) inode in unix

• In-memory
– Mount table about mounted volumes

– The open-file tables (system-wide and per process)
– Directory structure cache

– Buffers of the file-system blocks

Volume: logical disk drive, perhaps a partition

24

In-Memory File System Structures

Opening a file
fopen() returns fid

Reading a file
Inode refers to an individual
file

25

On-disk File-System Structures

1. Boot control block contains info needed by
system to boot OS from that volume
– Needed if volume contains OS, usually first block

of volume

2. Volume control block (superblock ext or
master file tableNTFS) contains volume details
– Total # of blocks, # of free blocks, block size, free

block pointers or array

3. Directory structure organizes the files
– File Names and inode numbers UFS, master file

table NTFS

Volume: logical disk drive, perhaps a partition

Super

block

Directory,

FCBs
File data blocks

Boot

block

26

File-System Implementation (Cont.)

4. Per-file File Control Block (FCB or “inode”)
contains many details about the file

– Indexed using inode number; permissions, size,
dates UFS (unix file system)

– master file table using relational DB structures
NTFS

27

When a file is created

The OS

• Allocates a new FCB.

• Update directory

– Reads the appropriate directory into memory, in

unix a directory is a file with special type field

– updates it with the new file name and FCB,

– writes it back to the disk.

28

Partitions and Mounting

• Partition can be a volume containing a file system
(cooked) or raw – just a sequence of blocks with no
file system perhaps for swap space

• Boot block can point to boot volume or boot
loader set of blocks that contain enough code to
know how to load the kernel from the file system

• Root partition contains the OS, Mounted at boot
time
– other partitions can hold other OSes, other file systems,

or be raw

– Other partitions can mount automatically or manually

• At mount time, file system consistency checked

29

Virtual File Systems

• Virtual File Systems (VFS) in Unix kernel is an
abstraction layer on top of specific file systems.

• VFS allows the same system call interface (the API) to
be used for different types of file systems

• The API (POSIX system calls) is to the VFS interface,
rather than any specific type of file system

Virtual to specific FS interface

30

NFS (Network File System)

Source

A distributed file system protocol uses the Open Network Computing Remote Procedure Call (ONC
RPC) system (1984).

https://www.researchgate.net/figure/NFS-software-architecture_fig1_2364749

31

File Sharing – Remote File Systems

• Uses networking to allow file system access between
systems
– Manually via programs like FTP/SFTP

– Automatically, seamlessly using distributed file systems

– Semi automatically via the world wide web

• Client-server model allows clients to mount remote
file systems from servers
– Server can serve multiple clients

– Client and user-on-client identification is insecure or
complicated

– NFS is standard UNIX client-server file sharing protocol

– CIFS is standard Windows protocol

– Standard operating system file calls are translated into
remote calls

32

Block Allocation Methods

An allocation method refers to how disk blocks
are allocated for files:

• Contiguous (not common, except for DVDs
etc.)

• Linked blocks, Linked guide (e.g., FAT32)

• Indexed (e.g., ex4)

Actual implementations are more complex than the simple
ones examined here.
Contrast these with allocation for processes in memory

A disk block can be a physical
sector. They ae numbered
using a linear sequence.

33

Contiguous Allocation

File tr: 3 blocks
Starting at block 14

34

Allocation Methods - Linked

ii. Linked allocation – each file a linked list of
blocks

– Each block contains pointer to next block.

– File ends at null pointer

– No external fragmentation, no compaction

Free space management system called when
new block needed

– Locating a block can take many I/Os and disk
seeks.

– Improve efficiency by clustering blocks into
groups but increases internal fragmentation

– Reliability can be a problem, since every block
in a file is linked.

35

Example of Indexed Allocation

Uses Index blocks.
Index block has pointers
to data blocks for a file.

36

Indexed Scheme: UNIX inodes

More index blocks than can be addressed with 32-bit file pointer

Assume 4K bytes per block, 32-bit addresses. Ext3 example.

Volume block:
Table with file names
Points to this inode
(file control block)

Common: 12 direct+3.
Indirect block could
contain 1024 pointers.
Max file size: k.k.k.4k (triple)+

Ext4: uses extents
(pointer+ length)

38

Performance

• Best method depends on file access type

– Contiguous: OK when files don’t change much

– Linked: used for smaller file systems of the past:
FAT, FAT32

– Indexed more complex, modern

• Single block access could require 0-3 index block reads
then data block read

• Clustering or disk caching can help improve throughput,
reduce CPU overhead

• Ex: Ext3, Ext4

Cluster: set of contiguous sectors

39

Performance (Cont.)

• Is adding instructions to the execution path to
save one disk I/O is reasonable?

– AMD Ryzen Threadripper 3990X (2020)
2,356,230 MIPS
• http://en.wikipedia.org/wiki/Instructions_per_second

– Typical disk drive at 250 I/Os per second
• 2,356,230 MIPS / 250 = 9425 million instructions during

one disk I/O

– Fast SSD drives provide 60,000 IOPS
• 2,356,230 MIPS / 60,000 = 39.3 millions instructions during

one disk I/O

40

Free-Space Management

• File system maintains free-space list to track available blocks/clusters
– (Using term “block” for simplicity)
– Approaches: i. Bit vector ii. Linked list iii. Grouping iv. Counting

i. Bit vector or bit map (n blocks)

…

0 1 2 n-1

bit[i] =



 1  block[i] free

0  block[i] occupied

Block number calculation for first free block

(number of bits per word) *(number of 0-value

words) + offset of first 1 bit

CPUs may have instructions to return offset within word of first “1” bit

00000000
00000000
00111110
..

41

Free-Space Management (Cont.)

Bit map requires extra space
– Example:

 block size = 4KB = 212 bytes

 disk size = 240 bytes (1 terabyte)

 blocks: n = 240/212 = 228

 Need 228 bits or 32MB for map

 if clusters of 4 blocks -> 8MB of memory

Bit map makes it easy to get contiguous files if
desired

42

Linked Free Space List on Disk

ii. Linked list (free list)

Cannot get contiguous space easily

No waste of space

Superblock Can hold
pointer to head of
linked list

43

Free-Space Management (Cont.)

• iii. Grouping
– Modify linked list to store address of next n-1 free

blocks in first free block, plus a pointer to next block
that contains free-block-pointers free block pointer blocks in a linked

list.

• iv. Counting
– Because space is frequently contiguously used and

freed, with contiguous-allocation allocation,
extents, or clustering
• Keep address of first free block and count of following free

contiguous blocks

• Free space list then has entries containing addresses and
counts

44

UNIX directory structure

• Contains only file names and the corresponding
inode numbers an inode uniquely identifies a file

• Use ls – i to retrieve inode numbers of the files in
the directory

• Looking up path names in UNIX

Example: /usr/tom/mbox

– Lookup inode for /, then for usr, then for tom, then for
mbox

45

Advantages of directory entries that have name and inode information

• Changing filename only requires changing the
directory entry

• Only 1 physical copy of file needs to be on disk

– File may have several names (or the same name) in
different directories

• Directory entries are small

– Most file info is kept in the inode

46

Hard and symbolic links

Hard Links:

• Both file names refer to the same inode (and hence
same file)
– Directory entry in /dirA

 ..[12345 filename1]..

– Directory entry in /dirB

 ..[12345 filename2]..

• To create a hard link

 ln /dirA/filename1 /dirB/filename2

• Symbolic link shortcut in windows

– To create a symbolic link

 ln -s /dirA/filenmame1 /dirB/filename3

 File filename3 just contains a pointer

47

File system based on inodes

Limitations

– File must fit in a single disk partition

– Partition size and number of files are fixed when
system is set up

inode preallocation and distribution

• inodes are preallocated on a volume

– Even on empty disks % of space lost to inodes

• Preallocating inodes

– Improves performance

• Keep file’s data block close to its inode

– Reduce seek times

48

Checking up on the inodes

Command: df -i (df is for disk filesystem)

Gives inode statistics for the file systems: total, free and used nodes

Command: ls –i (lists inodes of the files in current directory_

Filesystem Inodes IUsed IFree IUse% Mounted on

devtmpfs 2045460 484 2044976 1% /dev

tmpfs 2053722 1 2053721 1% /dev/shm

tmpfs 2053722 695 2053027 1% /run

tmpfs 2053722 16 2053706 1% /sys/fs/cgroup

13320302 diskusage.txt

2408538 Documents/

680003 downloads/

	Slide 1
	Slide 2: Disk Structure
	Slide 3: Directory Structure
	Slide 4: Course notes
	Slide 5: Directory Organization
	Slide 6: File System Mounting
	Slide 7: File Sharing
	Slide 8: Protection: Access Lists and Groups
	Slide 9: Windows 7 Access-Control List Management
	Slide 10: A Sample UNIX Directory Listing
	Slide 11
	Slide 12: Chap 14/15: File System Implementation/internals
	Slide 13: File-System Structure
	Slide 14: Layered File System
	Slide 16: File System Layers (from bottom)
	Slide 17: File Systems
	Slide 18: Data and Metadata
	Slide 19: Process, System, Files
	Slide 20: OS File Data Structures
	Slide 21: Common File Systems
	Slide 22: File-System Implementation: Outline
	Slide 23: File-System Implementation
	Slide 24: In-Memory File System Structures
	Slide 25: On-disk File-System Structures
	Slide 26: File-System Implementation (Cont.)
	Slide 27: When a file is created
	Slide 28: Partitions and Mounting
	Slide 29: Virtual File Systems
	Slide 30: NFS (Network File System)
	Slide 31: File Sharing – Remote File Systems
	Slide 32: Block Allocation Methods
	Slide 33: Contiguous Allocation
	Slide 34: Allocation Methods - Linked
	Slide 35: Example of Indexed Allocation
	Slide 36: Indexed Scheme: UNIX inodes
	Slide 38: Performance
	Slide 39: Performance (Cont.)
	Slide 40: Free-Space Management
	Slide 41: Free-Space Management (Cont.)
	Slide 42: Linked Free Space List on Disk
	Slide 43: Free-Space Management (Cont.)
	Slide 44: UNIX directory structure
	Slide 45: Advantages of directory entries that have name and inode information
	Slide 46: Hard and symbolic links
	Slide 47: File system based on inodes
	Slide 48: Checking up on the inodes

