
1 1

Colorado State University
Yashwant K Malaiya

Fall 2024 L20
Virtual Memory

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Please be considerate

• Allow other students to focus

– No talking (except for iClicker sessions), humming, etc.

– No cell phone use (except for iClicker)

– No laptop/handheld use, unless pledge submitted, and rules
followed.

– No leaving in the middle of the class or just after an iClicker
session.

3

Project D2 Progress report

• Your group has been assigned a Canvas Group
(Research or Development).

• One person will submit the report on behalf of the
group. Due Oct 31.

– Use the format specifications for the Final report, with about
half the size.

• When graded, all persons will automatically receive the
score. Note: A groups involving both students from section needs special

attention. One sec 1 students has joined a Sec 801 group.

• All members of a group are expected to contribute
their fair share of effort. We will check.

4

Page Replacement Algorithms

Algorithms

• FIFO

• “Optimal”

• The Least Recently Used (LRU)
– Exact Implementations

• Time of use field, Stack

– Approximate implementations
• Reference bit

• Reference bit with shift register

• Second chance: clock

• Enhanced second chance: dirty or not?

• Other

5

First-In-First-Out (FIFO) Algorithm

• Reference string:
7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

• 3 frames (3 pages can be in memory at a time
per process)

• 15 page faults (out of 20 accesses)

• Sometimes a page is needed soon after
replacement 7,0,1,2,0,3 (0 out),0, ..

6

“Optimal” Algorithm Belady 66

• Replace page that will not be used for longest period of time

– 4th access: replace 7 because we will not use if got the longest time…

– 9 page replacements is optimal for the example

• But how do we know the future pages needed?
– Can’t read the future in reality.

• Used for measuring how well an algorithm performs.

7

Least Recently Used (LRU) Algorithm

• Use past knowledge rather than future
• Replace page that has not been used in the most amount

of time (4th access – page 7 is least recently used …_)

• Associate time of last use with each page

• 12 faults – better than FIFO (15) but worse than OPT (9)
• Generally good algorithm and frequently used
• But how to implement it by tracking the page usage?

Track usage
carefully!

LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly

8

LRU Algorithm: Implementations
Possible tracking implementations
• Counter implementation

– Every page entry has a counter; every time page is
referenced through this entry, copy the clock into the
counter

– When a page needs to be changed, look at the counters
to find smallest value
• Search through table needed

• Stack implementation
– Keep a stack of page numbers in a double link form:
– Page referenced:

• move it to the top
• requires 6 pointers to be changed

– Each update expensive
– No search for replacement needed (bottom is least recently used)

9

Use Of A Stack to Record Most Recent Page References

Too slow if done in software

Least recently used ->

Most recently used ->

This shows tracking stack,
not actual frames.

10

LRU Approximation Algorithms

• LRU needs special hardware and still slow

• Reference 1 bit per frame to track history

– With each page associate a bit, initially = 0

– When the page is referenced, bit set to 1

– Replace any page with reference bit = 0 (if one
exists)
• 0 implies not used since initialization

• We do not know the order, however.

• Advanced schemes using more bits: preserve more
information about the order

11

Ref bit + history shift register

LRU approximation 9 bits per frame to track history

Ref bit: 1 indicates used, Shift register records history. Examples:

Ref Bit Shift Register Shift Register after OS timer interrupt

1 0000 0000 1000 0000

1 1001 0001 1100 1000

0 0110 0011 0011 0001

• Interpret 8-bit bytes as unsigned integers
• Page with the lowest number is the LRU page: replace.

Examples:
• 00000000 : Not used in last 8 periods
• 01100101 : Used 4 times in the last 8 periods
• 11000100 used more recently than 01110111

12

Second-chance algorithm

• Second-chance algorithm

– Generally FIFO, plus hardware-provided reference
bit

– Avoid throwing out a heavily used page

– “Clock” replacement (using circular queue): hand
as a pointer

– Consider next page
• Reference bit = 0 -> replace it

• reference bit = 1 then: give it another chance

– set reference bit 0, leave page in memory

– consider next page, subject to same rules

13

Second-Chance (clock) Page-Replacement Algorithm

• Clock replacement: hand
as a pointer

• Consider next page
– Reference bit = 0 ->

replace it
– reference bit = 1 then:

• set reference bit 0, leave
page in memory

• consider next page,
subject to same rules

Example:
(a) Change to 0, give it
another chance
(b) Already 0. Replace page

14

Enhanced Second-Chance Algorithm

Improve algorithm by using reference bit and modify bit (if
available) in concert clean page: better replacement candidate

• Take ordered pair (reference, modify)
1. (0, 0) neither recently used not modified – best page to

replace
2. (0, 1) not recently used but modified – not quite as good,

must write out before replacement
3. (1, 0) recently used but clean – probably will be used again

soon
4. (1, 1) recently used and modified – probably will be used

again soon and need to write out before replacement
• When page replacement called for, use the clock scheme

but use the four classes replace page in lowest non-empty
class
– Might need to search circular queue several times

15

Counting Algorithms

• Keep a counter of the number of references
that have been made to each page
– Not common

• Least Frequently Used (LFU) Algorithm:
replaces page with smallest count

• Most Frequently Used (MFU) Algorithm:
based on the argument that the page with the
smallest count was probably just brought in
and has yet to be used

16

Clever Techniques for enhancing Perf

• Keep a buffer (pool) of free frames, always
– Then frame available when needed, not found at fault

time
– Read page into free frame and select victim to evict

and add to free pool
– When convenient, evict victim

• Keep list of modified pages
– When backing store is otherwise idle, write pages there

and set to non-dirty (being proactive!)

• Keep free frames’ previous contents intact and
note what is in them
– If referenced again before reused, no need to load

contents again from disk
– Generally useful to reduce penalty if wrong victim

frame selected

17

Buffering and applications

• Some applications (like databases) often
understand their memory/disk usage better
than the OS

– Provide their own buffering schemes

– If both the OS and the application were to buffer
• Twice the I/O is being utilized for a given I/O

– OS may provide “raw access” disk to special
programs without file system services.

18

Allocation of Frames

How to allocate frames to processes?

– Each process needs minimum number of frames
Depending on specific needs of the process

– Maximum of course is total frames in the system

• Two major allocation schemes

– fixed allocation

– priority allocation

• Many variations

19

Fixed Allocation

• Equal allocation – For example, if there are 100 frames
(after allocating frames for the OS) and 5 processes, give
each process 20 frames
– Keep some as free frame buffer pool

• Proportional allocation – Allocate according to the size of
process (need based)

– Dynamic as degree of multiprogramming, process sizes change

Example:
Processes P1,P2

𝑠𝑗= size of process 𝑝𝑗

𝑆 = σ 𝑠𝑗

𝑚 = total number of frames

𝑎𝑗 = 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑝𝑗 =
𝑠𝑗

𝑆
× 𝑚

m = 62
s1 =10
s2 =127

𝑎1=
10

137
× 62 ≈ 4

𝑎2=
127

137
× 62 ≈ 57

20

Priority Allocation

• Use a proportional allocation scheme using
priorities rather than size

• If process Pi generates a page fault,

– select for replacement one of its frames or

– select for replacement a frame from a process
with lower priority number

21

Global vs. Local Allocation

• Global replacement – process selects a
replacement frame from the set of all frames;
one process can take a frame from another
– But then process execution time can vary greatly

– But greater throughput, so more common

• Local replacement – each process selects from
only its own set of allocated frames
– More consistent per-process performance

– But possibly underutilized memory

22

Problem: Thrashing

• If a process does not have “enough” pages, the
page-fault rate is very high
– Page fault to get page
– Replace existing frame
– But quickly need replaced frame back
– This leads to:

• Low CPU utilization, leading to
• Operating system thinking that it needs to increase the

degree of multiprogramming leading to
• Another process added to the system

• Thrashing a process is busy swapping pages in
and out

23

Thrashing (Cont.)

24

Demand Paging and Thrashing

• Why does demand paging work?
Locality model
– Process migrates from one locality to another

– Localities may overlap

• Why does thrashing occur in a process?

 size of locality > total memory size allocated

– Limit effects by using local or priority page replacement

25

Locality In A Memory-Reference Pattern

26

Working-Set Model
• working-set window a fixed number of page references

• WSSi (working set of Process Pi) =
 total number of pages referenced in the most recent (varies in time)

– if too small, working set will not encompass entire locality

– if too large, working set will encompass several localities

– ws is an approximation of locality

• D = WSSi total demand for frames for all processes

– if D > m Thrashing

– Policy if D > m, then suspend or swap out one of the processes

Example: Δ = 10 page references

M is number of frames

27

Page-Fault Frequency Approach

• More direct approach than WSS
• Establish “acceptable” page-fault frequency (PFF)

rate for a process and use local replacement policy
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

28

Working Sets and Page Fault Rates

• Direct relationship between working set of a process and its page-
fault rate

• Working set changes over time

• Peaks and valleys over time

Peaks occur at locality changes: 3 working sets

29

Memory-Mapped Files

• Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory

• File is then in memory instead of disk
• A file is initially read using demand paging

– A page-sized portion of the file is read from the file system into a
physical page

– Subsequent reads/writes to/from the file are treated as ordinary
memory accesses

• Simplifies and speeds file access by driving file I/O through
memory rather than read() and write() system calls

• Also allows several processes to map the same file allowing the
pages in memory to be shared

• But when does written data make it to disk?
– Periodically and / or at file close() time
– For example, when the pager scans for dirty pages

30

Memory Mapped Files

Disk File uses 6 blocks
Page tables used for mapping

31

Allocating Kernel Memory

• Treated differently from user memory

• Often allocated from a free-memory pool

– Kernel requests memory for structures of varying sizes
• Process descriptors, semaphores, file objects etc.

• Often much smaller than page size

– Some kernel memory needs to be contiguous
• e.g. for device I/O

– approaches (skipped)

32

Other Considerations -- Prepaging

• Prepaging

– To reduce the large number of page faults that
occurs at process startup

– Prepage all or some of the pages a process will
need, before they are referenced

– But if prepaged pages are unused, I/O and memory
was wasted

– Assume s pages are prepaged and fraction α of the
pages is used
• Is cost of s * α saved pages faults > or < than the cost of

prepaging s * (1- α) unnecessary pages?

• α near zero greater prepaging loses

33

Other Issues – Page Size

• Sometimes OS designers have a choice
– Especially if running on custom-built CPU

• Page size selection must take into consideration:
– Fragmentation

– Page table size

– I/O overhead

– Number of page faults

– Locality

– TLB size and effectiveness

• Always power of 2, usually in the range 212 (4,096
bytes) to 222 (4,194,304 bytes)

• On average, growing over time

34

Page size issues – TLB Reach

• TLB Reach - The amount of memory accessible
from the TLB

• TLB Reach = (TLB Size) X (Page Size)

• Ideally, the working set of each process is stored
in the TLB

– Otherwise there is a high degree of page faults

35

Other Issues – Program Structure

• Program structure
– int[128,128] data; i: row, j: column

– Each row is stored in one page
– Program 1

 for (j = 0; j <128; j++)
 for (i = 0; i < 128; i++) multiple pages

 data[i,j] = 0;

 128 x 128 = 16,384 page faults

– Program 2 inner loop = 1 row = 1 page
 for (i = 0; i < 128; i++)
 for (j = 0; j < 128; j++)same page

 data[i,j] = 0;

128 page faults

38

Example: MS Windows

• Uses demand paging with clustering. Clustering
brings in pages surrounding the faulting page

• Processes are assigned working set minimum and
working set maximum
– Working set minimum is the minimum number of pages

the process is guaranteed to have in memory

– A process may be assigned as pages up to its working
set maximum

• When the amount of free memory in the system
falls below a threshold, automatic working set
trimming is performed to restore the amount of
free memory
– Working set trimming removes pages from processes

that have pages in excess of their working set minimum

39 39

Colorado State University
Yashwant K Malaiya

Fall 2024

CS370 Operating Systems

File-system

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

40

File-Systems

Ch 13: File system interface
• File Concept, types
• Attributes, Access Methods, operations, Protection
• Directory Structure, namespace, File-System Mounting, File Sharing
Ch 14: File system implementation
Ch 15: File system internals
• Storage abstraction: File system metadata (size, free lists), File

metadata(attributes, disk block maps), data blocks
• Allocation of blocks to files: contiguous, sequential, linked list

allocation, indexed
• In memory info: Mount table, directory structure cache, open file

table, buffers
• Unix: inode numbers for directories and files
Ch 11: Mass storage: technology specific details

41

File Systems

42

File types

Type used by programs not OS

43

File Attributes
• Name – only information kept in human-readable

form
• Identifier – unique tag (number) identifies file

within file system
• Type – needed for systems that support different

types
• Location – pointer to file location on device
• Size – current file size
• Protection – controls who can do reading, writing,

executing
• Time, date, and user identification – data for

protection, security, and usage monitoring
• Information about files are kept in the directory

structure, which is maintained on the disk
• Many variations, including extended file attributes

such as file checksum

44

Disk Structure

Disk can be subdivided into partitions
• Disks or partitions can be RAID protected against

failure
• Partition can be formatted with a file system.

Different partitions can host different file systems.
• Entity containing file system known as a volume
• Each volume containing file system also tracks that

file system’s info in device directory or volume
table of contents

As well as general-purpose file systems there are
many special-purpose file systems, frequently all
within the same operating system or computer

45

Directory Structure

Directory: A collection of nodes containing information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk

46

Operations Performed on Directory

• Traverse the file system

• List a directory

• Search for a file

• Create/Delete/Rename a file

47

Directory Organization

• All files within a directory must have a
unique name. But ..

Evolution of directory structure

• Single level directory

• Two-level directory

• Tree-structured directories:

– efficient grouping, searching,

– absolute or relative path names

• Acyclic graph directories

– Shared sub-directory, files

	Slide 1
	Slide 2: Please be considerate
	Slide 3: Project D2 Progress report
	Slide 4: Page Replacement Algorithms
	Slide 5: First-In-First-Out (FIFO) Algorithm
	Slide 6: “Optimal” Algorithm Belady 66
	Slide 7: Least Recently Used (LRU) Algorithm
	Slide 8: LRU Algorithm: Implementations
	Slide 9: Use Of A Stack to Record Most Recent Page References
	Slide 10: LRU Approximation Algorithms
	Slide 11: Ref bit + history shift register
	Slide 12: Second-chance algorithm
	Slide 13: Second-Chance (clock) Page-Replacement Algorithm
	Slide 14: Enhanced Second-Chance Algorithm
	Slide 15: Counting Algorithms
	Slide 16: Clever Techniques for enhancing Perf
	Slide 17: Buffering and applications
	Slide 18: Allocation of Frames
	Slide 19: Fixed Allocation
	Slide 20: Priority Allocation
	Slide 21: Global vs. Local Allocation
	Slide 22: Problem: Thrashing
	Slide 23: Thrashing (Cont.)
	Slide 24: Demand Paging and Thrashing
	Slide 25: Locality In A Memory-Reference Pattern
	Slide 26: Working-Set Model
	Slide 27: Page-Fault Frequency Approach
	Slide 28: Working Sets and Page Fault Rates
	Slide 29: Memory-Mapped Files
	Slide 30: Memory Mapped Files
	Slide 31: Allocating Kernel Memory
	Slide 32: Other Considerations -- Prepaging
	Slide 33: Other Issues – Page Size
	Slide 34: Page size issues – TLB Reach
	Slide 35: Other Issues – Program Structure
	Slide 38: Example: MS Windows
	Slide 39
	Slide 40: File-Systems
	Slide 41: File Systems
	Slide 42: File types
	Slide 43: File Attributes
	Slide 44: Disk Structure
	Slide 45: Directory Structure
	Slide 46: Operations Performed on Directory
	Slide 47: Directory Organization

