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Major Transition

So far we have studied certain algorithmic patterns 
Greedy, 
Divide and conquer, 
Dynamic programming

to develop efficient algorithms.

Now we want to classify and quantify problems that cannot be 
solved efficiently.

Our tool for doing this is another algorithmic pattern: reduction

Reduction transforms the input and output of an algorithm so
that it can be used to solve a different problem.
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Reductions

An person A is handed an empty kettle and is asked to make 
tea. A fills up the kettle, boils the water and makes tea.

A person B is handed a full kettle and is asked to make tea.

What do you think  the person B does?
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B empties the kettle and hands it to A  J

B knows that A can make tea, but A starts 
with an empty kettle, so B transforms the 
problem so that it fits A’s algorithm.



Reductions

Sustainability Mantra: Reuse, Reduce, Recycle …

If we have a solution to one problem and we can use this 
solution to solve another problem, we do not need to write a new 
program, we can reuse the existing code, and reduce the new 
problem (change its input (and output)), so it can use the 
existing code to solve it.

eg 1: We have a max heap,  but we need a min heap. How can we 
use the max heap to perform min heap operations, without 
changing the max heap code?
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InsertMinHeap(x): InsertMaxHeap(-x);

ExtractMinHeap(): x=ExtractMaxHeap();  return –x;



Arbitrage

We have a set of currencies and conversion rates from each 
currency to each other currency.

Is there a cyclic sequence of currency exchanges that 
provides a profit?  eg:
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0.63
$            £

0.013                      1.14

¥           €
106

0.64
$            £

0.013                      1.14

¥           €
106

loss: $ à £ à €  à ¥ à $:  0.63*1.14*106*0.013 = 0.981

profit: $ à £ à €  à ¥ à $:  0.64*1.14*106*0.013 = 1.005



Arbitrage

We have a set of currencies and conversion rates from each 
currency to each other currency.

Is there a cyclic sequence of currency exchanges that 
provides a profit?

Is there an algorithm that we studied, that we can use to 
solve his problem?

How would we reduce to that algorithm?
Bellman Ford: finding negative cycles in a graph

rate à -(log rate)
*    à +

profit if product>1    à profit if sum<0
Try it for:  2  ¼   4   ¼   and for: 2   ½   4  ¼  and 2  1  4  ¼  



Arbitrage

How would we reduce to that algorithm?
Bellman Ford: finding negative cycles in a graph

rate à -(log rate)
*    à +

profit if product>1    à profit if sum<0
Try it for:  2 ¼  4  ¼   and for: 2 ½  4  ¼  and 2 1   4  ¼  

2* ¼ * 4 * ¼ = ½   à -1 + 2 + -2 + 2  =   1   LOSS
2* ½  *4* ¼   = 1  à -1 +  1 + -2 + 2 =   0
2*  1  *4  * ¼  = 2  à -1 +  0 + -2 + 2 = -1   PROFIT
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Algorithm Design Patterns and Problem Patterns

Algorithm design patterns Example
! Greedy. O(n log n) interval scheduling
! Divide-and-conquer. O(n log n) closest point pair
! Dynamic programming. O(n m) negative cycles
! Reductions.
! Approximation algorithms.
! Randomized algorithms.

Problem patterns
! NP-completeness. Existence of a polynomial 

algorithm unknown.
! Undecidability. Provable that 

no algorithm exists.
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Classifying problems

Q.  Which problems will we be able to solve in practice?
Those with polynomial-time algorithms. But some polynomial algorithms 
have such a high degree that they are practically intractable (e.g. primes, 
O( (log n) 6). (log n: the number of digits in the number n)

Some problems provably require exponential-time.
! Towers of Hanoi
! Generate all permutations of 1 to n

But some algorithms have exponential worst case, but are still tractable 
for the type of problems we usually solve with them  (Simplex algorithm 
for Linear Programming)

Grey area: A number of fundamental problems have defied classification 
for decades.  We don’t know of a polynomial algorithm for them, but 
neither can prove that no polynomial algorithm exists.
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Primes Problem

PRIMES problem: given an int p > 1, is p prime?
PRIMES:  X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, …. }
Algorithm:  
[Agrawal-Kayal-Saxena, 2002] p(|s|) = |s|12.  
Later improved to |s|6 [Pomerance, Lenstra]
(See wikipedia: AKS primality test)

! For a long time people were not sure if the primes 
problem had a polynomial solution.
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Polynomial-Time Reductions

Suppose we could solve X in polynomial-time. What else could we 
solve in polynomial time?

Reduction.  Problem Y polynomially reduces to problem X if 
arbitrary instances of problem Y can be solved using:
! Polynomial number of standard computational steps to transform 

a Y input to an X input, and an X result to a Y result, plus
! Polynomial number of calls to black box that solves problem  X.
! Because polynomial (plus or times) polynomial is polynomial 

Notation.  Y £ P X.   We can think of it as “X is potentially more 
complex than Y”.

Remark
! We pay for the time to write down instances sent to black box  
Þ inputs of X must also be of polynomial size.
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Polynomial-Time Reduction

Purpose.  Classify problems according to relative difficulty.

Design algorithms.  If Y £ P X and X can be solved in polynomial-
time,  then Y can also be solved in polynomial time.

Q: If Y £ P X and X cannot be solved in polynomial-time, can  
Y be solved in polynomial time, or not?

Hint: can you shoot a fly with a cannon?

A: It depends on the problem,  see the coming slides



Interval Scheduling

You have a resource (hotel room, printer, lecture room, 
telescope, manufacturing facility, professor...)

There are requests to use the resource in the form of start 
time si and finish time fi, such that si<fi

Objective:  grant as many requests as possible.
Two requests i and j are compatible if they don't overlap, i.e. 

fi ≤ sj or fj ≤ si

Solution?  Complexity?

Greedy, sort by finish time, 
pick first compatible interval, repeat

O(n logn)



Independent Set

Input.  Graph.
Goal.  Find maximum cardinality independent set:
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6

2

5

1

7

3
4

6

5

1

4

subset of nodes such that no 

two are joined by an edge

Can you formulate interval scheduling as an independent set 
problem? 

If so, how could you solve the interval scheduling problem? 

Yes, interval = node, edge if two intervals overlap. 
We call this an interval graph.

Transform it to an  independent set problem.



Independent set problem

v There is no known efficient way to solve the 
independent set problem.

v But we just said: we can formulate interval 
scheduling as independent set problem.....  ???

v We used the solution of a more complex problem 
X to solve a simpler problem Y, by reducing Y 
polynomially to X

v What does "no efficient way" mean?

v The only solution we have so far is trying all sub 
sets and finding the largest independent one.

v How many sub sets of a set of n nodes are there?
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Polynomial-Time Reduction

Purpose.  Classify problems according to relative difficulty.

Design algorithms.  If Y £ P X and X can be solved in polynomial-
time,  then Y can also be solved in polynomial time.

Establish intractability.  If Y £ P X and Y cannot be solved in 
polynomial-time, then X cannot be solved in polynomial time.

WHY?

Establish equivalence.  If X £ P Y and Y £ P X they are as hard,
notation: X º P Y.

Otherwise we have a contradiction: 
if X has a polynomial solution then Y has.



Reduction Strategies

§ Reduction by equivalence.

§ Reduction from special case to general case.

§ Transitivity of reductions 

§ Reduction by encoding with gadgets.
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The Independent Set Problem

INDEPENDENT SET:  Given a graph G = (V, E) and an integer k, is 
there a subset of vertices S Í V such that |S| ³ k, and for each 
edge at most one of its endpoints is in S? 

(i.e.,  no edges join nodes in S)
Is there an independent set of size ³ 6?  Yes.
Is there an independent set of size ³ 7?  No.

independent set

We have turned 
the independent set 
problem into a 
decision (Yes/No) 
problem by introducing
|S| >= k.
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The Vertex Cover Problem

VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there 
a subset of vertices S Í V such that |S| £ k, and for each edge, 
at least one of its endpoints is in S?

(i.e., the nodes in S cover all edges in E)

Is there a vertex cover of size £ 4?  Yes.
Is there a vertex cover of size £ 3?  No.

vertex cover
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Vertex Cover and Independent Set

Claim.  Let G=(V, E) be a graph.  Then S is an independent set iff
V–S is a vertex cover.

vertex cover

independent set
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Vertex Cover and Independent Set

Claim.  Let G=(V, E) be a graph.  Then S is an independent set iff
V – S is a vertex cover.
Þ
! Let S be an independent set.
! Consider an arbitrary edge (u, v).
! S independent Þ u Ï S or v Ï S  Þ u Î V - S or v Î V - S.
! Thus, V - S covers (u, v).
Ü
! Let V - S be a vertex cover.
! Consider two nodes u Î S and v Î S.
! Observe that (u, v) Ï E since V - S is a vertex cover, and 

therefore all edges have at least one node in V - S.
! Thus, no two nodes in S are joined by an edge  Þ S 

independent set. ▪
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Vertex Cover and Independent Set

S is an independent set iff V – S is a vertex cover.

This shows:
VERTEX-COVER £ P INDEPENDENT-SET  and
INDEPENDENT-SET £ P VERTEX-COVER.

from which we conclude:
VERTEX-COVER ºP INDEPENDENT-SET.



Reduction from Special Case to General Case

In this case we do not prove Y º P X, we prove Y £ P X

Eg:  Vertex cover versus set cover

Vertex cover is phrased in terms of  graphs

Set cover is phrased, more generally,  in terms of sets
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Set Cover

SET COVER:  Given a set U of elements, a collection S1, S2, . . . , 
Sm of subsets of U, and an integer k, is there a collection of at 
most k of these subsets whose union is equal to U?

Example:

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
S1 = {3, 7} S4 = {2, 4}
S2 = {3, 4, 5, 6} S5 = {5}
S3 = {1} S6 =  {1, 2, 6, 7}
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Vertex Cover Reduces to Set Cover

Claim.  VERTEX-COVER £ P SET-COVER.
Proof.  Given a VERTEX-COVER instance G = (V, E), k, we reduce it 
to a set cover instance with U=E and a subset of edges Sv for
each node v in V
! Create SET-COVER instance:

– U = E,  Sv = {e Î E : e incident to v }
! Set-cover of size £ k iff vertex cover of size £ k.  
! Hence we have shown that VERTEX-COVER £ P SET-COVER ▪

a

d

b

e

f c

VERTEX COVER

k = 2
e1 

e2 e3 

e5 

e4 

e6 

e7 
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SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf= {1, 2, 6, 7}

Vertex Cover Reduces to Set Cover

Claim.  VERTEX-COVER £ P SET-COVER.
Proof.  Given a VERTEX-COVER instance G = (V, E), k, we reduce it 
to a set cover instance with U=E and a subset Sv for each v in V
! Create SET-COVER instance:

– U = E,  Sv = {e Î E : e incident to v }
! Set-cover of size £ k iff vertex cover of size £ k.  
! Hence we have shown that VERTEX-COVER £ P SET-COVER ▪

a

d

b

e

f c

VERTEX COVER

k = 2
e1 

e2 e3 

e5 

e4 

e6 

e7 
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Example: 

Yes:  x1 = true, x2 = true x3 = false,  or   x1=1, x2=1, x3=0

What about (x2∨x3)? 
What is a necessary and sufficient condition for a CNF to be true?

Literal: A Boolean value or variable or its 
negation.

Clause: A disjunction of literals.

Conjunctive normal form (CNF):  
A propositional formula F that is a 
conjunction of clauses.

SAT:  Given a CNF F, does it have a satisfying truth assignment?
3-SAT:  SAT where each clause contains exactly 3 literals.
Any logical formula can be expressed in CNF.

The Satisfiability Problem

Cj = x1 ∨ x2 ∨ x3

xi   or  xi (xi   = not  xi )

  

€ 

Φ =  C1 ∧C2 ∧ C3∧ C4

€ 

x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( )

Notice: for the CNF to be true all clauses must 
have at least one literal evaluating to true

x2 ∨ x3 ∨ 0



SAT

In its general form, SAT concerns an expression in CNF 
(Conjunctive Normal Form). It’s many clauses, ANDed (∧) 
together. Each clause is a disjunction, a number of literals 
(variables or negated (¬) variables) ORed (∨) together.

(a ∨ b ∨ c) ∧ (a ∨ b ∨ ¬c ∨ d) ∧ (c ∨ d) ∧ (b)
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SAT => 3SAT

Say we have an arbitrary expression:

(a ∨ b ∨ c) ∧ (a ∨ b ∨ ¬c ∨ d) ∧ (c ∨ d) ∧ (b)

It’s CNF, but not 3-CNF. We want 3-CNF, because we want to 
work with 3SAT, which is easier than SAT. We want each 
disjunctive clause to be three exactly elements. How can we 
convert CNF to 3-CNF? There are several cases to consider:

• clauses with one element
• clauses with two elements
• clauses with three elements
• clauses with more than three elements
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Clause with one element

If we have a clause with one 
element, (b), we introduce a new 
variable x, and rewrite the 
single-element clause thus:

(b) ≡ (b ∨ x) ∧ (b ∨ ¬x)

If x=0 (false), then this 
reduces to

(b) ≡ (b ∨ 0) ∧ (b ∨ ¬0)
(b) ≡ (b) ∧ (b ∨ ¬0)
(b) ≡ (b) ∧ (b ∨ 1)
(b) ≡ (b) ∧ (1)
(b) ≡ (b)

If x=1 (true), then this reduces 
to

(b) ≡ (b ∨ 1) ∧ (b ∨ ¬1)
(b) ≡ (1) ∧ (b ∨ ¬1)
(b) ≡ (b ∨ ¬1)
(b) ≡ (b ∨ 0)
(b) ≡ (b)
∴, (b) ≡ (b ∨ x) ∧ (b ∨ ¬x). 

Hooray! We’ve converted a one-
element clause into two two-
element clauses.Or, you can just 
convert (b) to (b ∨ 0), if you 
allow boolean constants instead 
of literals. Or even (b ∨ b).
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Clause with 2 elements

If we have a clause with two 
elements, (c ∨ d), we introduce a 
new variable y, and rewrite the 
single-element clause thus:

(c ∨ d) ≡ (c ∨ d ∨ y) ∧ (c ∨ d ∨ ¬y)

If y=0 (false), then this reduces to

(c ∨ d) ≡ (c ∨ d ∨ 0) ∧ (c ∨ d ∨ ¬0)
(c ∨ d) ≡ (c ∨ d) ∧ (c ∨ d ∨ ¬0)
(c ∨ d) ≡ (c ∨ d) ∧ (c ∨ d ∨ 1)
(c ∨ d) ≡ (c ∨ d) ∧ (1)
(c ∨ d) ≡ (c ∨ d)

If y=1 (true), then this reduces to

(c ∨ d) ≡ (c ∨ d ∨ 1) ∧ (c ∨ d ∨ ¬1)
(c ∨ d) ≡ (1) ∧ (c ∨ d ∨ ¬1)
(c ∨ d) ≡ (c ∨ d ∨ ¬1)
(c ∨ d) ≡ (c ∨ d ∨ 0)
(c ∨ d) ≡ (c ∨ d)

∴, 
(c ∨ d) ≡ (c ∨ d ∨ y) ∧ (c ∨ d ∨ ¬y). 

Hooray! We’ve converted a two-
element clause into two three-
element clauses.
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Clause with more than 3 elements

Lemma: if the formula (A ∨ B) is satisfiable, that is, if there is a truth-
assignment to A and B such that (A ∨ B) is true, then the formula (A ∨
z) ∧ (B ∨ ¬z), where z is a new variable, is satisfiable. This is true even 
if A and B are not simple variables, but instead expressions.

Think of it this way:

• If (A ∨ B) is true, then either A is true, or B is true (or maybe both).
• If A is true, then let z=0, which yields: (A ∨ 0) ∧ (B ∨ ¬0), which is 

true.
• If B is true, then let z=1, which yields: (A ∨ 1) ∧ (B ∨ ¬1), which is 

true.
• If A and B are both false, then (A ∨ B) is false. (A ∨ z) ∧ (B ∨ ¬z) ⇒

(0 ∨ z) ∧ (0 ∨ ¬z) ⇒ z ∧ ¬z ⇒ false.
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Clause with more than 3 elements - 2

A B A ∨ B A ∨ z B ∨ ¬z (A ∨ z) ∧
(B ∨ ¬z)

0 0 0 z ¬z 0
0 1 1 z 1 z
1 0 1 1 ¬z ¬z
1 1 1 1 1 1
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Or, as a truth table:



Clause with more than 3 elements - 3

The last column is satisfiable, by an appropriate assignment to 
z, in all rows except the first one, where A ∨ B itself is not 
satisfiable. Therefore, the formulas A ∨ B and (A ∨ z) ∧ (B ∨ ¬z) 
have equal satisfiability.

This lets us break a lengthy clause into two smaller clauses. We 
can pull the last two components of the lengthy clause into a 
separate clause of length 3, replacing them with a new variable. 
This reduces the length of the first clause by one element. 
Rinse & repeat.

• (a ∨ b ∨ c ∨ d) ⇒ (a ∨ b ∨ z) ∧ (c ∨ d ∨ ¬z)
• (a ∨ b ∨ c ∨ d ∨ e) ⇒ (a ∨ b ∨ c ∨ z) ∧ (d ∨ e ∨ ¬z)
• (a ∨ b ∨ c ∨ d ∨ e ∨ f) ⇒ (a ∨ b ∨ c ∨ d ∨ z) ∧ (e ∨ f ∨ ¬z)
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3-SAT Reduces to Independent Set

Claim.  3-SAT £ P INDEPENDENT-SET.
Proof.  Given an instance F of 3-SAT, we construct an instance 
(G, k) of INDEPENDENT-SET that has an independent set of size k 
iff F is satisfiable.
Construction.
! G contains 3 vertices for each clause, one for each literal.
! Connect 3 literals in a clause in a triangle.
! Connect a literal to each of its negations.
! We call these connected triangles gadgets, creating a useful

instance of independent set.

  

€ 

x2

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )
  

€ 

x3

  

€ 

x1

  

€ 

x1   

€ 

x2   

€ 

x4

  

€ 

x1  

€ 

x2

  

€ 

x3
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3-SAT Reduces to Independent Set

Claim.  G contains independent set of size k = |F| iff F is 
satisfiable.

Proof.  Þ Let S be independent set of size k.
1) S must contain exactly one vertex in each triangle, and     

cannot contain both                    (they are connected) 
2) Set these literals to true, there are no conflicts, because (1)
3) All clauses are satisfied.
Ü Given satisfying assignment, select one true literal from 
each triangle. This is an independent set of size k.  ▪

  

€ 

x2   

€ 

x3

  

€ 

x1

  

€ 

x1   

€ 

x2   

€ 

x4

  

€ 

x1  

€ 

x2

  

€ 

x3

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )

number of clauses, i.e. triangles

xi   and  xi
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Ù

¬

Ù Ú

Ù

Ú

1 0 ? ? ?

output

inputshard-coded inputs

yes:  1 0 1

Is that the only
option ?

Circuit Satisfiability

CIRCUIT-SAT.  A combinational circuit is a directed acyclic graph 
built out of AND (Ù), OR(Ú), and NOT(¬) nodes. Given such a circuit, is 
there a way to set the circuit inputs so that the output is 1?

No, 
1 1 0
1 1 1
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CIRCUIT-SAT £ P 3-SAT 

! Let K be any circuit.
! Create a 3-SAT variable xi for each circuit element i.
! Make 3-SAT clauses; compute values for each circuit-SAT node,  

eg.:
x2 = ¬ x3 Þ add 2 clauses:
x1 = x4 Ú x5   Þ add 3 clauses:
x0 = x1 Ù x2   Þ add 3 clauses:

! Hard-coded input values and output value.
– x5 = 0  Þ add 1 clause:
– x0 = 1  Þ add 1 clause:

! Final step:  turn clauses of length < 3 into
clauses of length exactly 3.  HOW?

x2 ∨ x3 , x2 ∨ x3

€ 

x1 ∨ x4 , x1 ∨ x5  ,  x1 ∨ x4 ∨ x5

x0 ∨ x1,  x0 ∨ x2 ,  x0 ∨ x1 ∨ x2

Ú

Ù

¬

0 ? ?

output
x0

x2x1

x3x4x5

  

€ 

x5
  

€ 

x0

x à x or 0 or 0
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Ù

¬

u-v

Ú

1

independent set of size >=2?

n inputs (nodes in independent set) hard-coded inputs (graph description)

Ú

Ú

Ù

u-w

0

Ù

v-w

1

Ù

u
?

Ù

v
?

Ù

w
?

Ù

Ú

set of size >= 2?

both endpoints of some 
edge  have been chosen?

independent set?

Independent Set £ p CircSAT

Example.  Construction below creates a circuit C whose inputs 
can be set so that C outputs true iff graph G has an 
independent set of size >=2.

u

v

G = (V, E), n = 3

Try it for {u,v}

w

Try it for {u,w}
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Independent Set £ p CircSAT

To show that any Independent Setk problem £ p CircSAT we 
construct a circuit C with inputs and one output: 

inputs: 
1: graph description, in terms of all its edges 

(1 bit per node pair)
2: set description, in terms of the nodes in the set 

(1 bit per node)
output: one output bit: yes/no

The components of the circuit:
1: define the graph in terms of the edges it contains
2: check whether the set has a pair of nodes that is 

an edge in the graph. 
If there is such a pair, the set is not independent 

3: count whether there are at least k nodes in the set   
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Review and Conclusions

Basic reduction strategies.
! Equivalence:  INDEPENDENT-SET º P VERTEX-COVER.
! Special case to general case:  VERTEX-COVER £ P SET-COVER.
! Encoding with gadgets:  3-SAT £ P INDEPENDENT-SET.

Transitivity.  If X £ P Y and Y £ P Z, then X £ P Z.
Proof idea.  Compose the two algorithms.

Example:  
3-SAT £ P INDEPENDENT-SET £ P VERTEX-COVER £ P SET-COVER.

Equivalence through transitivity.  If X £ P Y and Y £ P Z, and Z £ P
X then they are all equivalent.

Example:  
C-SAT  £ P 3-SAT £ P INDEPENDENT-SET £ P C-SAT



Why are NP problems called “NP”?

The act of searching for a solution can be viewed as a 
Non Deterministic Search over all possible solutions.

The Non Deterministic search guesses all choices of 
the search at the same time, thereby allowing us to 
find the right guess in one step (think choice vector
e.g. of the knapsack problem with span=n).

This brings the search time in an exponential sized 
search space down to a polynomial, if we could make 
all guesses right.

So NP stands for Non Deterministic Polynomial

42
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Example 3-Satisfiability

SAT. Given a Conjunctive Normal Form (ands of or-expressions) 
formula F, is there a satisfying assignment?
3_SAT: 3 variables in each or-expression, n: the number of 
variables in F

Solution is a choice vector: An assignment of truth values to the 
n Boolean variables.

Possible solution vector

3-SAT is an problem NP (parlance 3-SAT is in NP, because NP is 
the class of NP problems
).

x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( ) ∧ x1 ∨ x3 ∨ x4( )

€ 

x1 =1, x2 =1, x3 = 0, x4 =1
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P, NP, EXP

P.  Problems for which there is a polynomial-time algorithm.

NP.  Problems for which there is a polynomial length choice vector, or 
polynomial time certifiers.

EXP.  Problems for which there is an exponential-time algorithm.

Theorem 1.  P  Í NP.

Theorem 2.  NP  Í EXP.

Later theory/algorithms courses (e.g. cs520) will discuss the proofs of 
these theorems.
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The One Million Dollar CS Question:  P = NP?

P = NP?
! Clay mathematics institute $1 million prize.

If yes:  Efficient algorithms for 3-COLOR, TSP, SAT, …
If no:  No efficient algorithms possible for 3-COLOR, TSP, SAT, …

Consensus opinion on P = NP?  Probably no.

EXP NP

P

If  P ¹ NP If  P = NP

EXP
P = NP

would break RSA cryptography
(and potentially collapse economy)



NP Completeness

v Polynomial time reductions (X £ P Y)

v The class NP – problems with polynomial time certifiers

v NP complete problem – problem in NP such that every 
other NP problem has a polynomial reduction to it.

v Examples of NP-complete problems:
Circuit-SAT, 3-SAT, Independent Set
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Circuit SAT is NPC [Cook 1971, Levin 1973]

Take an arbitrary problem X in NP
Show it can be reduced in polynomial time to Circuit SAT

Intuitive Argument:
Any algorithm, that takes a fixed number of n input 

bits and produces an output bit (yes/no answer), can be 
represented by a circuit of and-s, or-s, and not-s, after 
all, that is how we can view any computer program in 
execution.

If the program takes a number of steps polynomial in n, 
then the  circuit has polynomial size.

(The nasty details are in how an algorithm is translated 
into a circuit :)
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3-SAT is NP-Complete

Theorem.  3-SAT is NP-complete.
Proof.  Enough to show that CIRCUIT-SAT £ P 3-SAT since 3-SAT is in NP.
! We did earlier in this lecture (showed that 3-SAT £ P CIRCUIT-SAT).
! Let K be any circuit. 
! Create a 3-SAT variable xi for each circuit element output (i.wire) i.
! Make 3-SAT clauses compute values for each circuit-SAT node, eg.:

x2 = ¬ x3 Þ add 2 clauses:
x1 = x4 Ú x5   Þ add 3 clauses:
x0 = x1 Ù x2   Þ add 3 clauses:

! Hard-coded input values and output value.
– x5 = 0  Þ add 1 clause:
– x0 = 1  Þ add 1 clause:

! Final step:  turn clauses of length < 3 into
clauses of length exactly 3.  

! HOW? 

x2 ∨ x3 , x2 ∨ x3

€ 

x1 ∨ x4 , x1 ∨ x5  ,  x1 ∨ x4 ∨ x5

x0 ∨ x1,  x0 ∨ x2 ,  x0 ∨ x1 ∨ x2

Ú

Ù

¬

0 ? ?

output

x0

x2x1

x3x4x5

  

€ 

x5
  

€ 

x0

add “or 0”-s
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Observation.  All problems below are NP-complete and 
polynomially reduce to one another!

CIRCUIT-SAT

3-SAT

INDEPENDENT SET

VERTEX COVER

SET COVER

NP-Completeness

by NP-completeness
of CIRCUIT-SAT 3-SAT reduces to

INDEPENDENT SET
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Extent and Impact of NP-Completeness

Extent of NP-completeness.  [Papadimitriou 1995] 

! Prime intellectual export of CS to other disciplines.

! 6,000 citations per year 

! Broad applicability and classification power.

! "Captures vast domains of computational, scientific, 
mathematical endeavors, and seems to roughly 
delimit what mathematicians and scientists have 
been aspiring to compute feasibly.”


